УДК 515.12

ОБ и-СОВЕРШЕННЫХ ОТОБРАЖЕНИЯХ

А.А. Чекеев, А.И. Чанбаева

Получены внутренняя и категорная характеристики *и*-непрерывных отображений в терминах декартовых квадратов.

Ключевые слова: u-непрерывное отображение; *u*-совершенное отображение; категория; zu-ультрафильтр; сходимость.

ON u-PERFECT MAPPINGS

A.A. Chekeev, A.I. Chanbaeva

The inner and categorical characterizations of u-continuous mappings in pullback squares terms have been obtained.

Keywords: u-continuous mapping; u-perfect mapping; category; z,-ultrafilter; convergence.

Basic features of uniform topology are presented in the books [1–3]. Every uniform space is denoted as uX where X is a Tychonoff space and u is a uniformity on X in uniform coverings terms [1, 2]. We denote the set of all (bounded) uniformly continuous functions on uX by C(uX) (by $C^*(uX)$) and $\mathfrak{Z}_u = \{f^{-1}(0) : f \in C(uX)\} = \mathfrak{Z}_u^* = \{g^{-1}(0) : g \in C^*(uX)\}$, since $\min\{|f|, 1\} \in C^*(uX)$ for any $f \in C(uX)$.

The maximal centered systems of elements \mathfrak{Z}_u are called z_u -ultrafilters. In [4] a mapping $f: uX \to vY$ of uniform space uX into uniform space vY is called u-continuous, if $f^{-1}(Z) \in \mathfrak{Z}_u$, $f^{-1}(Y \setminus Z) \in C\mathfrak{Z}_u = \{X \setminus N : N \in \mathfrak{Z}_u\}$ for any $Z \in \mathfrak{Z}_u$. In [4] it is proved that for uniformly continuous functions $h_i: uX \to I = [0,1], i = 1,2$ such that $h_1^{-1}(0) \cap h_2^{-1}(0) = \emptyset$ function $f: uX \to I$, determined as $f(x) = h_1(x) / (h_1(x) + h_2(x))$ for any $x \in X$, is u-continuous, and generally speaking, is not uniformly continuous. In [5], [6] important properties of u-closed mappings are determined and established, and in [5] also u-perfect mappings are introduced.

Definition 1. A mapping $f: uX \to vY$ of uniform space uX into uniform space vY is called *u-perfect* if:

1) it is u-continuous; 2) it is closed; 3) it is bicompact, i.e. $f^{-1}(y)$ -bicompact in X for any point $y \in Y$.

Theorem 2. A uniform space uX is bicompact if and only if every Z_u – ultrafilter is converging in uX.

Proof. If uniform space uX is bicompact, then all ultrafilters are converging in it ([3]), in particularly, all z_u -ultrafilters are converging.

Conversely, let *F* be an arbitrary centered system of closed sets in uniform space *uX*. As $\Im(uX)$ is a closed sets base of *uX*, then for any $F \in F$ there is such family $\xi_F \subset \Im(uX)$, that $F = \bigcap \xi_F$. Then family $\xi = \{\xi_F : F \in F\} \subset \Im(uX)$ is centered. Let p_{ξ} be such z_u -ultrafilter, that $\xi \subset p_{\xi}$. Then $\bigcap p_{\xi} = \{x\}$ for some point $x \in X$ and $\{x\} = \bigcap p_{\xi} \subset \bigcap \xi \subset \bigcap F$, i.e. $\bigcap F \neq \emptyset$. Therefore uniform space *uX* is bicompact.

It is known Franklin [7] and Herrlich [8] established the characterization of perfect mappings by means of Stone-Čech compactification in category *Tych* of Tychonoff spaces and its continuous mappings, and Borubaev

Вестник КРСУ. 2016. Том 16. № 5

[1] established the characterization of uniformly perfect mappings by means of Samuel compactification in category *Unif* of uniform spaces and its uniformly continuous mappings.

We denote as *ZUnif* the category, whose objects are a uniform spaces, and morphisms are *u*-continuous mappings. In this category in pullback squares terms by means of compactification $\beta_u X$ [9] of uniform space

uX the characterization of *u*-perfect mappings of uniform spaces have been obtained.

Theorem 3. Let uX and vY be a uniform spaces. Then for u-continuous mapping $f: uX \rightarrow vY$ the next conditions are equivalent:

(1) f is u-perfect.

(2) If p is z_u – ultrafilter on uX and prefilter $f(p) = \{f(Z) : Z \in p\}$ is converging to point $y \in Y$, then p is converging to point $x \in f^{-1}(y)$.

(3) For extension mapping $\beta f : \beta_u X \to \beta_v Y$ a remainder $\beta_u X \setminus X$ transfers to a remainder $\beta_v Y \setminus Y$, i.e. $\beta f (\beta_u X \setminus X) \subset \beta_v Y \setminus Y$.

(4) Square

$$uX \xrightarrow{i_X} \beta_u X$$

$$f \downarrow \qquad \downarrow_{\beta f} \qquad (*)$$

$$vY \xrightarrow{i_Y} \beta_v Y$$

is pullback in category ZUnif.

Proof. (1) \Rightarrow (2). Let f be u-perfect mapping and p such z_u -ultrafilter on uX, that prefilter f(p) is converging to point $y \in Y$. A set of all uniformly closed sets $Q \in \mathfrak{Z}(vY)$, which are neighborhoods of point y, forms z_v -ultrafilter q on uniform space vY. A mapping $f: uX \to vY$ is u-continuous, so $f^{-1}(Q) \in p$ for any $Q \in q$ and we have $f^{-1}(y) = \bigcap\{f^{-1}(Q): Q \in q\} = f^{-1}(\bigcap q)$. If z_u -ultrafilter p is converging, then it is converging to some point $f^{-1}(y)$ of inverse image. We suppose, that z_u – ultrafilter is not converging. Then for any point $x \in f^{-1}(y)$ there is such $V_x \in L(uX)$ and $Z_x \in \mathfrak{Z}(uX)$, that $x \in V_x \subset [V_i]_X \subset Z_x$ and $Z_x \notin p$ ([4]). A family $\{V_x: x \in f^{-1}(y)\}$ is open covering of bicompact $f^{-1}(y)$. Let $\{V_{x_i}: i=1,2,...,n\}$ be a finite subcovering. Then $\bigcup_{i=1}^n Z_i \notin p$, $V = \bigcup_{i=1}^n V_{x_i} \in L(uX)$ hence $X \setminus V \in \mathfrak{Z}(uX)$. Since $X \setminus V \cup \bigcup_{i=1}^n Z_i = X$ then $X \setminus V \in p$. Then $f(X \setminus V)$ is closed and $f(X \setminus V) \in f(p)$. A set $Y \setminus f(X \setminus V)$ is open neighborhood of point y. Therefore there is such $Q' \in q$ that $y \in Q' \subset Y \setminus f(X \setminus V)$. Then $Q' \cap f(X \setminus V) = \emptyset$, so $f^{-1}(Q') \cap X \setminus V = \emptyset$ is contradiction, as $f^{-1}(Q') \in p$ and $X \setminus V \in p$.

 $(2) \Rightarrow (1)$. Let p' be an arbitrary $z_{u'}$ – ultrafilter in uniform subspace $u'f^{-1}(y)$, where and $y \in Y$ be an arbitrary point. From properties of uniformly closed sets ([4]) it follows, that for any $Z' \in p'$ there is such $Z \in \mathfrak{Z}(uX)$, that $Z' = Z \cap f^{-1}(y)$. Let $\xi_{p'} = \{Z \in \mathfrak{Z}(uX): Z' = Z \cap f^{-1}(y) \text{ and } Z' \in p'\}$. Then there is such z_u – ultrafilter p on uX, that $\xi_{p'} \subset p$. Let q be z_v – ultrafilter in vY, consisting of all uniformly closed neighborhoods of point y. Then $\cap q = \bigcap\{Q: Q \in q\} = \{y\}$, $Q \in \mathfrak{Z}(vY)$ and $f^{-1}(Q) \in p$ for any $Q \in q$. Then prefilter f(p) is converging to point $y \in Y$. So z_u – ultrafilter p is converging to some point $x \in f^{-1}(y)$. Then $z_{u'}$ – ultrafilter p' is converging to point $x \in f^{-1}(y)$, hence on Theorem 2 a uniform space $u'f^{-1}(y)$ is bicompact for any point $y \in Y$.

We show a closeness of mapping f. Let $F \subset X$ be closed set and $y \in [f(F)]_Y$ be an arbitrary point. Let q be z_u – ultrafilter consisting of all uniformly closed neighborhoods of point $y \in Y$. Then $Q \cap f(F) \neq \emptyset$ for any $Q \in q$. Therefore $f(f^{-1}(Q) \cap F) = Q \cap f(X) \neq \emptyset$. For every $Q \in q$, $f^{-1}(Q) \in \mathfrak{Z}(uX)$ and family $\{f^{-1}(Q) \cap F : Q \in q\}$ is centered and $f^{-1}(Q) \cap F \in \mathfrak{Z}(u'F)$, where $u' = u \wedge F$ ([8], [7]) containing centered family $\{f^{-1}(Q) \cap F : Q \in q\}$, and p such z_u – ultrafilter in uniform space uX that $\xi_{p'} \subset p$, where $\xi_{p'} = \{Z \in \mathfrak{Z}(uX) : Z' = Z \cap f^{-1}(y) \ u \ Z' \in p'\}$. A prefilter f(p') is converging to Y and since $f^{-1}(Q) \in p$ for any $Q \in q$ then f(p) is converging to Y too. Then on condition of theorem z_u – ultrafilter p is converging to some point $x \in f^{-1}(y)$. Then $z_{u'}$ – ultrafilter p' also is converging to point $x \in f^{-1}(y)$. Since F is closed in X, then $x \in F$. So we have $y = f(x) \in f(F)$, i.e. $[f(F)]_Y \subset f(F)$. Obviously the inverse inclusion $f([F]_X) = f(F) \subset [f(F)]_Y$. Thus $f(F) = [f(F)]_Y$ and f is closed mapping.

(2) \Rightarrow (3). Let $x \in \beta_u X \setminus X$ be an arbitrary point. Then there is unique z_u – ultrafilter p on uX such that $\{x\} = \bigcap\{[Z]_{\beta_u X} : Z \in p\}$. For extension mapping $\beta_u f : \beta_u X \to \beta_v Y$ the equality $\beta_u f([Z]_{\beta_u X}) = [f(Z)]_{\beta_v Y}$ holds for any $Z \in p$. Then $\beta_u f(x) = \bigcap\{[f(Z)]_{\beta_u X} : Z \in p\} = \{y\}$ for some point $y \in \beta_v Y$. Suppose that $y \in Y$. Then prefilter $f(p) = \{f(Z) : Z \in p\}$ is converging to y and on condition of theorem z_u – ultrafilter p is converging to some point $x' \in f^{-1}(y)$. Evidently, that $\{x'\} = \bigcap\{[Z]_{\beta_u X} : Z \in p\}$, i.e. x = x' is contradiction. Therefore $y = f(x) \in \beta_v Y \setminus Y$.

 $(3) \Rightarrow (2) \text{. Let } p \text{ be an arbitrary } z_u - \text{ultrafilter in } uX \text{ and prefilter } f(p) = \{f(Z) : Z \in p\} \text{ is converging to point } y \in Y \text{. On property (4) of theorem 2.4. ([9]) we have } \{x\} = \cap\{[Z]_{\beta_u X} : Z \in p\} \in \beta_u X \text{ and point } x \text{ is unique. Then } \beta_u f([Z]_{\beta_u X}) = [f(Z)]_{\beta_v Y} \text{ for any } Z \in p \text{ and } \beta_u f(x) = \beta_u f(\cap\{[Z]_{\beta_u X} : Z \in p\}) = = \cap\{[f(Z)]_{\beta_v Y} : Z \in p\} = y \text{, i.e. } x \in (\beta_u f)^{-1}(y).$

As $\beta_u f(\beta_u X \setminus X) \subset \beta_v Y \setminus Y$ then $x \in X$.

 $(3) \Rightarrow (4)$. We suppose, that for some object WZ of category ZUnif, $h: WZ \rightarrow \beta_u X$ and $g: WZ \rightarrow vY$ are such u-continuous mappings, that $\beta_u f \circ h = i_Y \circ g$. Since $(i_Y \circ g)(Z)$ are containing in $\beta_v Y$ and $\beta_u f(\beta_u X \setminus X) \subset \beta_v Y \setminus Y$, then $h(Z) \subset X$. We determine a mapping $h': WZ \rightarrow uX$ as h'(z) = h(z) for any $z \in Z$. Thus, square (*) is pullback.

(4) \Rightarrow (3) Let $x \in \beta_u X$ and we suppose, that $\beta_u X(x) = y \in Y$. We put $Z = \{x\}$ and determine a mapping $h: WZ \to \beta_u X$, as h(x) = x, and $g: WZ \to vY$ as $g(x) = y = \beta_u f(x) \in Y$, where W is trivial uniformity on $Z = \{x\}$. Then $\beta_u f \circ h = i_Y \circ g$. There is such *u*-continuous mapping $h': WZ \to uX$ that $h = i_X \circ h'$. So $x \in X$, i.e. $\beta_u f(\beta_u X \setminus X) \subset \beta_v Y \setminus Y$.

References

- 1. Borubaev A.A. Uniform topology / A.A. Borubaev. Bishkek: Ilim, 2013. 336 p. (in Russian).
- 2. Isbell J.R. Uniform spaces / J.R. Isbell // Providence. 1964. 175 p.
- 3. Engelking R. General topology / R. Engelking. Moscow: Mir, 1986. 752 p. (in Russian).
- Charalambous M.G. A new covering dimension functions for uniform spaces / M.G. Charalambous // J. London Math. 1975. Soc. 11. P. 137–143.
- Chekeev A.A. Wallman type bicompactification of uniform spaces and its applications / A.A. Chekeev // Vestnik KNU. 2015. Vol. 2. P. 1–22. (in Russian).

Вестник КРСУ. 2016. Том 16. № 5

- 6. *Chekeev A.A.* On closed and perfect mappings of uniform spaces / A.A. Chekeev, A.I. Chanbaeva // Nauka i novye tehnologii. 2014. Vol. 4. P. 3–6 (in Russian).
- 7. *Franklin S.P.* Topics in categorical topology / S.P. Franklin // Class Notes. Carnegie-Mellon University. 1970. P. 38.
- 8. Herrlich H. Categorical topology / H. Herrlich // General Topology and Applications. 1971. Vol. 1. P. 1–15.
- Chekeev A.A. On closed mappings of uniform spaces / A.A. Chekeev, T.J. Kasymova, A.I. Chanbaeva // TWMS J. PAM. 2015. Vol. 6, No. 1. P. 78–83.