УДК 515.12

ИНВЕРСНО-ЗАМКНУТЫЕ КОЛЬЦА НА РАВНОМЕРНЫХ ПРОСТРАНСТВАХ

А.А. Чекеев, Б.З. Рахманкулов

Получены равномерные аналоги теорем Стоуна и Гельфанда – Колмогорова о характеризации тихоновских пространств посредством колец всех (ограниченных) непрерывных функций.

Ключевые слова: кольцо; идеал; максимальный идеал; компактификация; *соz-*тонкое пространство.

INVERSION-CLOSED RINGS ON UNIFORM SPACES

A.A. Chekeev, B.Z. Rahmankulov

The uniform analogues of Stone and Gelfand-Kolmogoroff theorems on characterization of Tychonoff spaces by means of the rings of all (bounded) continuous functions have been proved.

Keywords: ring, ideal; maximal ideal; compactification; coz-fine space.

Introduction

Given paper is an organic continuation of the previous paper "On β -like compactification of the uniform spaces", so all denotations and references from the first paper are similar.

Main results

Let $\mathcal{M}(C_u^*(\beta_u X))(\mathcal{M}(C_u^*(X)), \mathcal{M}(C_u(X)))$ be a collection of all maximal ideals of commutative ring with unity $C_u^*(\beta_u X)(C_u^*(X), C_u(X))$ with the Stone topology [1]. For a compactification $\beta_u X$ the Stone Theorem is formulated as it follows down:

Theorem 2.1. [1]. For a compactification $\beta_u X$ the maximal ideals of $C^*(\beta_u X)$ are in the one-to-one correspondence with the points of $\beta_u X$ and are given $I_p^* = \{ f \in C^*(\beta_u X) : f(p) = 0 \}$ for p is a point of $\beta_u X$.

$$\text{Let } \mathcal{M}\big(C^*\big(\beta_{\scriptscriptstyle u}X\big)\big) \text{ be denote as } \mathcal{M}^*\big(\beta_{\scriptscriptstyle u}X\big), \ \mathcal{M}\big(C^*_{\scriptscriptstyle u}\big(\beta_{\scriptscriptstyle u}X\big)\big) \text{ as } \mathcal{M}^*\big(uX\big) \text{ and } \mathcal{M}\big(C_{\scriptscriptstyle u}\big(X\big)\big) \text{ as } \mathcal{M}\big(uX\big).$$

Theorem 2.2. [1]. A compact space $\beta_u X$ is homeomorphic to the maximal ideals space $\mathcal{M}^*(\beta_u X)$.

The following corollary is immediately implicated from the observation that the ring $C_u^*(X)$ is isomorphic to $C^*(\beta_u X)$.

Corollary 2.3. A compactification $\beta_u X$ is homeomorphic to the maximal ideals space $\mathcal{M}^*(uX)$.

If $C_u^*(X)$ and $C_v^*(Y)$ are isomorphic for a uniform spaces uX and vY, then $\mathcal{M}^*(uX)$ and $\mathcal{M}^*(vY)$ are homeomorphic.

Corollary 2.4. For a uniform spaces uX and vY its compactifications $\beta_u X$ and $\beta_v Y$ are homeomorphic if and only if $C_u^*(X)$ and $C_v^*(Y)$ are isomorphic.

From the Theorems 2.4, 2.8., 2.16 of the previous paper the next result holds.

Corollary 2.5. Let uX and vY be the first-countable uniform spaces. Then uX is coz – homeomorphic to vX if and only if $C_v^*(X)$ is isomorphic to $C_v^*(Y)$.

Corollary 2.6. Let uX and vY be the first-countable coz-fine uniform spaces. Then uX is uniformly homeomorphic to vY if and only if $C_u^*(X)$ is isomorphic to $C_v^*(Y)$.

Corollary 2.7. Let uX and vY be the first-countable coz – fine uniform spaces. Then a completion $\mu_u X$ is uniformly homeomorphic to a completion $\mu_v Y$ if and only if $C_u^*(X)$ is isomorphic to $C_v^*(Y)$.

For coz – fine uniform spaces uX and vY $C_u^*(X) = U^*(uX)$ and $C_v^*(Y) = U^*(vY)$ [2], [3].

Corollary 2.8. Let uX and vY be the first-countable coz – fine uniform spaces. Then a completion $\mu_u X$ is uniformly homeomorphic to a completion $\mu_v Y$ if and only if $U^*(uX)$ is isomorphic to $U^*(vY)$.

Corollary 2.9. Let uX and vY be a complete the first-countable coz-fine uniform spaces. Then uX is uniformly homeomorphic to vY if and only if $U^*(uX)$ is isomorphic to $U^*(vY)$.

For the $C_u^*(X)$ we can utilize the ring isomorphism $f \mapsto \beta_u f$ of $C_u^*(X)$ and $C^*(\beta_u X)$ to characterize the maximal ideals of $C_u^*(X)$ in terms of $\beta_u X$.

Theorem 2.10. The maximal ideals of $C_u^*(X)$ are in the one-to-one correspondence with the points of $\beta_u X$ and are given $I_p^* = \{ f \in C^*(X) : \beta_u f(p) = 0 \}$ for p is a point of $\beta_u X$.

For the relate z_u – filters and z_u – ultrafilters to the ring $C_u(X)$ consider the function $\mathcal{Z}: C_u(X) \to Z_u$ ($\mathcal{Z}(f) = f^{-1}(0) \in Z_u$ for $f \in C_u(X)$). The following result is analogue [4, 2.3] and shows that the image of an ideal (maximal ideal) under \mathcal{Z} is a z_u – filter (z_u – ultrafilter) and that the preimage of a z_u – filter (z_u – ultrafilter) is an ideal (maximal ideal).

Proposition 2.11. (a) If I is a proper (maximal) ideal in $C_u(X)$, then $\mathcal{Z}(I) = \{\mathcal{Z}(f) : f \in I\}$ is a z_u - filter (z_u - ultrafilter) on uX.

(b) If \mathcal{F} is a z_u -filter $(z_u$ -ultrafilter) on uX, then $\mathcal{Z}^{-1}[\mathcal{F}] = \{f \in C_u(X) : \mathcal{Z}(f) \in \mathcal{F}\}$ is an (maximal) ideal in $C_u(X)$.

Theorem 2.12. The maximal ideals of $C_u(X)$ are in the one-to-one correspondence with the points of $\beta_u X$ and are given $I_p = \left\{ f \in C_u(X) : p \in \left[\mathcal{Z}(f) \right]_{\beta, X} \right\}$ for p is a point of $\beta_u X$.

Proof. It is analogically to the proof of Theorem 1.30 [5].

Corollary 2.13. A compactification $\beta_u X$ is homeomorphic to the maximal ideals space $\mathcal{M}(uX)$.

Proof. It is analogically to the proof of Corollary 1.31 [5].

If $C_u(X)$ and $C_v(Y)$ are isomorphic for a uniform spaces uX and vY, then $\mathcal{M}(uX)$ and $\mathcal{M}(vY)$ are homeomorphic. Q.E.D.

Corollary 2.14. For a uniform spaces uX and vY its compactifications $\beta_u X$ and $\beta_v Y$ are homeomorphic to each other if and only if $\mathcal{M}(uX)$ and $\mathcal{M}(vY)$ are isomorphic to each other.

Corollary 2.15. Let uX and vY be the first-countable uniform spaces. Then uX is coz – homeomorphic to vX if and only if $C_u(X)$ is isomorphic to $C_v(Y)$.

Corollary 2.16. Let uX and vY be the first-countable coz-fine uniform spaces. Then uX is uniformly homeomorphic to vY if and only if $C_u(X)$ is isomorphic to $C_v(Y)$.

Corollary 2.17. Let uX and vY be the first-countable coz – fine uniform spaces. Then a completion $\mu_u X$ is uniformly homeomorphic to a completion $\mu_v Y$ if and only if $C_u(X)$ is isomorphic to $C_v(Y)$.

For coz – fine uniform spaces uX and vY $C_u(X) = U(uX)$ and $C_v(Y) = U(vY)$ [2], [3].

Corollary 2.18. Let uX and vY be the first-countable coz – fine uniform spaces. Then a completion $\mu_u X$ is uniformly homeomorphic to a completion $\mu_v Y$ if and only if U(uX) is isomorphic to U(vY).

Corollary 2.19. Let uX and vY be a complete the first-countable coz – fine uniform spaces. Then uX is uniformly homeomorphic to vY if and only if U(uX) is isomorphic to U(vY).

Remark 2.20. Note, that Theorem 2.10 is a uniform analogue of Stone Theorem [1] and Theorem 2.12 is a uniform analogue of Gelfand – Kolmogoroff Theorem [6].

References

- 1. *Stone M*. Applications of the theory of Boolean rings to general topology / M. Stone // Trans. Amer. Math. Soc. 41 (1937). P. 375–481
- 2. Frolik Z. A note on metric-fine spaces / Z. Frolik // Proceeding of the American Mathematical Society. 1974. V. 46. № 1. P. 111–119.
- 3. Frolik Z. Four functor into paved spaces / Z. Frolik // In seminar uniform spaces 1973, 4. Matematický ústav ČSAV. Praha, 1975. P. 27–72
- 4. Gillman L. Rings of continuous functions / L. Gillman, M. Jerison // The Univ. Series in Higher Math. Van Nostrand, Princeton, N. J., 1960. 303 p.
- 5. Walker R. The Stone-Čech compactification / R. Walker // Springer-Verlag. New York, Berlin, 1974. 333 p.
- 6. *Gelfand J.* On rings of continuous function on topological spaces / J. Gelfand, A. Kolmogoroff // Dokl. Akad. Nauk SSSR 22, 1939. P. 11–15. (in Russian).