УДК 539.319

К УРАВНЕНИЮ ДИАГРАММ "НАГРУЗКА-ДЕФОРМАЦИЯ"

Б.С. Ордобаев, Б.Т. Мекенбаев, Ч.Т. Дуйшеналиев

Растяжение и сжатие цилиндрического образца является основным видом испытаний, дающим наиболее полное представление о материале. Построив диаграмму зависимости между силой и деформацией, определяют такие величины, как модуль упругости, коэффициент Пуассона, предел текучести и т. д.

Ключевые слова: нагрузка; деформация; напряжение; уравнение диаграмм; модуль Юнга; коэффициент Пуассона; константы Ламе.

"КҮЧ КЕЛҮҮ-ДЕФОРМАЦИЯ" ДИАГРАММАЛАРЫНЫН ТЕҢДЕМЕЛЕРИ ҮЧҮН

Цилиндр формасындагы үлгүнү чою жана кысуу материалдар тууралуу толук маалымат берген сыноо болуп саналат. Күч менен деформациянын ортосундагы көз карандылыктын диагрммасын түзүү менен ийкемдүүлүктүн модулу, Пуассондун коэффициенти, агым туруксуздугунун жеткен чеги жана ушул сыяктуу башка чоңдуктарды аныктаса болот.

Түйүндүү сөздөр: күч келүү, деформация, чыңалуу, диаграмманын теңдемеси, Юнгдын модулу, Пуассондун коэффициенти, Ламенин константтары.

TO THE EQUATION OF "LOAD-DEFORMATION" DIAGRAMS

B.S. Ordobaev, B.T. Mekenbaev, Ch.T. Duishenaliev

Stretching and contraction of a cylindrical specimen is the main type of test, giving the most complete picture of the material. Having constructed a diagram of the dependence between force and deformation, such quantities as the modulus of elasticity, Poisson's ratio, yield strength, etc. are determined.

Keywords: load; deformation; stress; equation of diagram; Jung's module; Poisson's ratio; constants of the Lame.

В работах [1, 2] предлагается один из способов определения механических характеристик материалов. Их расчеты показывают, что модуль упругости намного (на порядок) отличается от применяемых в настоящее время. Предлагаемая методика применима для всех видов диаграмм, если даже они имеют криволинейные участки.

Уравнение равновесия цилиндрического тела [1]:

$$\frac{P}{F} = (\lambda + 2\mu)\varepsilon_z + 2\lambda\varepsilon_\phi, \qquad (1)$$

где λ , μ – коэффициенты Ляме; Р – осевая сила; *F* – площадь поперечного сечения цилиндра; ε_z – полная осевая деформация; ε_{ϕ} – полная кольцевая деформация.

Полные деформации при одних и тех же значениях λ, μ описывают диаграмму растяжения (сжатия), т. е. уравнение (1) удовлетворяется во всех точках диаграммы "нагрузка-деформация" [1, 2]. Полная деформация ε_i состоит из упругой ε_i^e и пластической ε_i^p составляющих [3]:

$$\mathbf{r}_i = \mathbf{\varepsilon}_i^e + \mathbf{\varepsilon}_i^p \,. \tag{2}$$

Уравнение равновесия (1) при учете (2) примет вид:

$$\frac{P}{F} = (\lambda + 2\mu)\varepsilon_z^e + 2\lambda\varepsilon_\phi^e + (\lambda + 2\mu)\varepsilon_z^p + 2\lambda\varepsilon_\phi^p .$$
(3)

Пусть имеется диаграмма "нагрузка–деформация" (рисунок 1), точке А которой соответствуют деформации ε_i^e и ε_i^p , равные отрезкам OA_z и OA_φ соответственно. В работе [1] показано, что AA_E = A_KA_φ = $2\lambda\varepsilon_{\phi}$. На рисунке 1 видим, что в точке А упругая деформация равна ε_z^e , поэтому $DD_E = 2\lambda\varepsilon_z^p$. Через точку D проводим отрезок DA₁₁, параллельный отрезку OE, тогда по рисунку 1, имеем:

$$A_E A_{11} = DD_E = 2\lambda \varepsilon_{\phi},$$

m ~ 1	1 10 11	Π			V 1
	$I = K \Omega \Omega d d d d d d d d d d d d d d d d d$	Паме и отношение	OCCEPTIV N KOTLIERL	ых компонент пласт	сицеской пеформации
таолица	і козффицисніці.	Jume n ornomenne	оссових и кольцевы		и теской деформации

Материал	λ, κгс/мм ²	μ, кгс/мм ²	$\left oldsymbol{arepsilon}_{z}^{p} / oldsymbol{arepsilon}_{\phi}^{p} ight $
Сталь 30	43321	1394	0,532
Алюминий	13128	538	0,541
Сталь 3	36110	1775	0,549
Гранит	458028	122879	0,768
Сталь 45	55082	1061	0,519
Серый чугун	13768	2805	0,704

 $AA_E = AA_{11} + A_{11}A_E$.

Учитывая (2) и полученные выше зависимости, будем иметь:

$$2\lambda\varepsilon_{\phi} = 2\lambda\varepsilon_{\phi}^{P} + 2\lambda\varepsilon_{\phi}^{e} .$$

Откуда

 $(\lambda + 2\mu)\varepsilon_z^p + 2\lambda\varepsilon_\phi^p = 0.$ (4) С учетом (4) получаем из (3):

$$\frac{P}{F} = (\lambda + 2\mu)\varepsilon_z^e + 2\lambda\varepsilon_\phi^e.$$
(5)

Из (4) вытекает, что

$$\frac{\varepsilon_{\phi}^{P}}{\varepsilon_{z}^{P}} = -\frac{\lambda + 2\mu}{2\lambda} \quad . \tag{6}$$

Это отношение остается постоянным, не зависит от вида нагружения, а зависит от свойств материала. Отношение кольцевой и осевой значений пластических деформаций для некоторых материалов приведено в таблице 1. Отношение (6) также не зависит от положения точки $D(D_1)$, так как отрезок DA_{11} параллелен прямой ОЕ. Изменение положения точки $D(D_1)$ вызывает изменения угла, т. е. углового коэффициента луча ОD. Обычно этот угловой коэффициент называется модулем упругости.

Теперь построим плоскость (а) в трехмерном пространстве (ε_z ; ε_{ϕ} ; P/F) (рисунок 2). Линией пересечения плоскости (а) с плоскостью (ε_z ; P/F) является линия OE.

Тангенс угла между ОЕ и О ε_z есть tg $\gamma = \lambda + 2\mu$. Плоскость (α) пересекается с плоскостью (ε_{ϕ} ; P/F) по прямой ОК, где tg $\Omega = 2\lambda$. ОТ – линия пересечения плоскости (α) с плоскостью (ε_z ; ε_{ϕ}), а направление ее определяется как

$$tg\beta = \frac{A_T A_{\phi}}{OA_{\phi}}$$
. (7)
Из треугольника A_rA₁A₁, имеем:

$$\begin{split} OA_{\phi} &= \frac{A_{\phi}A_{K}}{tg\Omega} \,, \\ A_{T}A_{\phi} &= \frac{A_{\phi}A_{K}}{tg\gamma} \,\,. \end{split}$$

Тогда из (7) получим:

$$tg\beta = \frac{tg\Omega}{tg\gamma} = \frac{2\lambda}{\lambda + 2\mu} \quad . \tag{8}$$

Кривая 3 есть кривая изменения диаграммы "нагрузка–деформация". Эта кривая лежит на плоскости (α). Найдем координаты точки А на этой кривой. Через точку А проведем плоскость, перпендикулярную к плоскости (ε_z ; ε_ϕ), и параллельную к плоскости (ε_ϕ ; P/F).

Линией пересечения этой плоскости с плоскостью (α) является прямая AA_E . Опустив из точки A_E прямую, перпендикулярную к оси $O\varepsilon_z$, получим осевую деформацию $\varepsilon_z = OA_z$. Далее через точку А проводим прямую DA, параллельную к плоскости (ε_z ; ε_a). Прямая DA перпендикулярна к оси P/F.

Рисунок 1 – Диаграмма "нагрузка–деформация": 1 – диаграмма "нагрузка–деформация ε_z"; 2 – диаграмма "нагрузка–деформация ε_s"

Вестник КРСУ. 2018. Том 18. № 8

Рисунок 2 – Плоскость нагружения: 1 – проекция графика на плоскость (ε_z; P/F); 2 – проекция графика на плоскость (ε_φ; P/F); 3 – график "наргузка– деформация"; 4 – проекция графика на плоскость (ε_z; ε_φ); прямая ОК – пресечение плоскости нагружения (α) с плоскостью (ε_φ; P/F); ОА – пересечение плоскости (α) с плоскостью (ε_z; ε_φ); ОЕ – пересечение плоскости (α)

с плоскостью (є_,; Р/F)

Когда точка А движется по этой прямой, усилие Р/F не меняется.

Пластические деформации должны развиваться по направлению прямой DA, отношение проекций которой на плоскости (ε_{a} ; P/F) и (ε_{z} ; P/F) дает

$$\frac{D_2 A_2}{D A_1} = \frac{\lambda + 2\mu}{2\lambda} . \tag{9}$$

Пластическая деформация равна отрезку DA, тогда проекции этой прямой на соответствующие плоскости являются компонентами пластической деформации.

Таким образом, имеем:

$$\varepsilon^p = DA, \quad \varepsilon^p_z = D_1 A_1, \quad \varepsilon^p_\phi = D_2 A_2.$$

Подставляя эти значения D_1A_1 , D_2A_2 в (9), будем иметь:

$$\frac{\varepsilon_{\phi}^{p}}{\varepsilon_{z}^{p}} = -\frac{\lambda + 2\mu}{2\lambda}$$

Рисунок 3 – К определению направления OD

Многие эксперименты показывают, что диаграмма "нагрузка–деформация" в начале имеет прямой участок. Здесь отношение упругих деформаций постоянное, т. е.

$$\nu = \frac{\varepsilon_{\phi}^{e}}{\varepsilon_{z}^{e}} \tag{10}$$

и они будут развиваться по прямой ОD. Эта прямая будет касательной к кривой 3. Траектории упругих деформаций – прямая OD, а пластических – DA. Если отношение упругих деформаций будет меняться, т. е. меняется по направлению прямой OD, то отношение пластических деформаций остается постоянным. Кривая 1 есть проекция кривой 3 на плоскость (ε_z ; P/F), а 2 – проекция на плоскость (ε_z ; P/F). Экспериментально определяются кривые 1 и 2. Если диаграмма "нагрузка–деформация" в начале имеет прямой участок, то можно определить направление OD (рисунок 3). Пусть tg θ_z и tg θ_{ϕ} – угловые коэффициенты касательных к кривым 1 и 2. По рисунку 3 имеем:

$$-\varepsilon_{\phi} t g \theta_{\phi} = \varepsilon_z t g \theta_z$$
.
Откуда найдем:

 $\frac{\varepsilon_{\phi}}{\varepsilon_z} = -\frac{tg\theta_z}{tg\theta_{\phi}} \quad .$

 ε_z *tg* θ_{ϕ} Сравнивая (1) и (11), получим:

$$v = -\frac{tg\theta_z}{tg\theta_{\phi}} \ . \tag{12}$$

(11)

Модуль упругости есть

 $E = tg\theta_z$.

Тогда из (12) вытекает, что

$$E = -\varepsilon_{\phi} t g \theta_{\phi}$$

На рисунке 4 показана диаграмма "нагрузкадеформация" для материала с площадкой текуче-

Рисунок 4 – Плоскость нагружения с площадкой текучести

сти. Рассмотрим прямую, описывающую упругую деформацию и проходящую через начало координат на плоскости (α). Условие принадлежности прямой

$$\frac{\varepsilon_{\phi}^{e}}{m} = \frac{\varepsilon_{z}^{e}}{n} = \frac{P/F}{q}$$
(13)

плоскости (α), описываемой уравнением (1), имеет вид:

$$(\lambda + 2\mu)n + 2\lambda m + q = 0.$$
⁽¹⁴⁾

Отношение деформаций (10) позволяет записать

$$v = -\frac{m}{n}$$

Откуда найдем

$$m = -nv$$

Последнее выражение позволяет из уравнения (13) получить:

$$q = (\lambda + 2\mu - 2\lambda \nu)n$$
. (15)
Из (13) найдем, что

 $\frac{P}{F} = \frac{n}{q} \varepsilon_z^e.$

Подстановка (14) в последнее выражение (15) позволит получить:

$$\frac{P}{F} = (\lambda + 2\mu - 2\lambda v)\varepsilon_z^e .$$
(16)

Выражение в скобках есть модуль упругости Е, т. е.

$$E = \lambda + 2\mu - 2\lambda v . \tag{17}$$

А выражение (16) есть закон Гука:

$$\frac{P}{F} = \mathbf{E}\varepsilon_z^e \,. \tag{18}$$

Из (17) видно, что модуль упругости зависит от v. График изменения E от v показан на рисунке 5, на котором видно, что любая прямая, лежащая на плоскости (α), характеризуется параметрами E и v.

Координатную систему (ε_z ; ε_ϕ ; P/F) повернем вокруг оси (P/F) так, как показано на рисунке 6.

Рисунок 6 – Поворот системы координат По рисунку 6 имеем:

$$\varepsilon_1 = \cos\beta\varepsilon_z + \sin\beta\varepsilon_\phi, \qquad (19)$$

Вестник КРСУ. 2018. Том 18. № 8

Таблица 2 – Сталь 45								
P/F, кгс/мм ²	$\epsilon_z \cdot 10^3$	$\epsilon_{\phi} \cdot 10^3$	$\epsilon_1 \cdot 10^3$	$\epsilon_2 \cdot 10^3$	E ₁ ·10 ⁻³ , кгс/мм ²			
12,0	0,56	-0,185	0,097	-0,588	124,16			
22,0	1,02	-0,33	0,177	-1,057	124,165			
36	14,88	-2,4	0,29	-16,62	124,19			
42	22,303	-11,2	0,34	-24,96	124,18			
Таблица 3 – Серый чугун								
P/F, кгс/мм ²	ε _z ·10 ³	$\epsilon_{\phi} \cdot 10^3$	$\epsilon_1 \cdot 10^3$	$\epsilon_2 \cdot 10^3$	E ₁ ·10 ⁻³ , кгс/мм ²			
-1,9	-0,146	0,034	-0,056	0,139	33,79			
-5,8	-0,461	0,414	-0,172	0,443	33,71			
-48,1	-20,61	12,76	-1,428	24,20	33,67			
Таблица 4 – Алюминий								
P/F, кгс/мм ²	$\epsilon_z \cdot 10^3$	$\epsilon_{\phi} \cdot 10^3$	$\epsilon_1 \cdot 10^3$	$\epsilon_2 \cdot 10^3$	E ₁ ·10 ⁻³ , кгс/мм ²			
3	0,451	-0,13	0,10	-0,459	29,924			
8	1,487	-0,5	0,268	-1,549	29,877			
12	20,068	-10,4	0,401	-22,6	29,893			
Таблица 5 – Мрамор								
P/F, кгс/мм ²	$\epsilon_z \cdot 10^3$	$\epsilon_{\phi} \cdot 10^3$	$\epsilon_1 \cdot 10^3$	$\epsilon_2 \cdot 10^3$	E ₁ ·10 ⁻³ , кгс/мм ²			
-140	-0,31	0,07	-0,078	0,305	1801,8			

-0,317

-0,462

0,31

0,5

$$\varepsilon_2 = -\sin\beta\varepsilon_z + \cos\beta\varepsilon_\phi, \qquad (20)$$

-1,3

-1,98

где

-570

-850

$$\cos\beta = \frac{\lambda + 2\mu}{E_1},\tag{21}$$

$$\sin\beta = \frac{2\lambda}{E_1},\tag{22}$$

$$E_1^2 = (\lambda + 2\mu)^2 + (2\lambda)^2.$$
 (23)

Здесь Е₁ – приведенный модуль упругости, представляющий собой тангенс угла наклона плоскости нагружения (α) к плоскости деформаций (ε_z; ε_φ). Подставляя (19) в (5), получим:

$$\frac{P}{F} = E_1 \varepsilon_1 \,. \tag{24}$$

Здесь

$$\varepsilon_1 = \frac{1}{E_1} \left((\lambda + 2\mu) \varepsilon_z + 2\lambda \varepsilon_\phi \right) \,.$$

Можно показать, что ε₁ зависит от упругих деформаций:

$$\varepsilon_1 = \frac{1}{E_1} \left((\lambda + 2\mu) \varepsilon_z^e + 2\lambda \varepsilon_\phi^e \right).$$
⁽²⁵⁾

Деформацию є2 разложим на упругую и пластическую составляющую (рисунок 7):

$$\varepsilon_2 = \varepsilon_2^e + \varepsilon_2^p$$
.

Вестник КРСУ. 2018. Том 18. № 8

1,297

2,018

1801,1

1800,0

Рисунок 7 – Плоскость нагружения в системе координат ($\epsilon_1; \epsilon_2; P/F$)

Учитывая (3), из (20) получим:

$$\varepsilon_2 = \frac{(\lambda + 2\mu)\varepsilon_{\phi}^e - 2\lambda\varepsilon_z^e}{E_1} - \frac{E_1}{2\lambda}\varepsilon_z^p.$$

Отсюда получим:

$$\varepsilon_2^5 = \frac{(\lambda + 2\mu)\varepsilon_{\phi}^e - 2\lambda\varepsilon_z^e}{E_1} ,$$

$$\varepsilon_z^p = -\sin\beta\varepsilon_2^p = -\frac{2\lambda}{E_1}\varepsilon_2^p \,.$$

Аналогичным способом можно получить, что

$$\varepsilon_{\phi}^{P} = \cos \beta \varepsilon_{2}^{P} = \frac{\lambda + 2\mu}{E_{1}} \varepsilon_{2}^{P}.$$

Значения приведенного модуля упругости Е₁, вычисленные по формуле (23) для различных материалов, получились равными: 124,13·10³ кгс/ мм² (сталь 45); 33,67·10³ кгс/мм² (серый чугун); 29,85·10³ кгс/мм² (алюминий); 1800,0·10³ кгс/мм² (мрамор).

Сравнение полученных значений E₁ с соответствующими экспериментальными значениями (таблицы 2–5) показало их хорошее совпадение.

Литература

- Жакыпбек А.Б. Новое воззрение на некоторые основы механики деформируемого тела / А.Б. Жакыпбек, Т.Б. Дуйшеналиев. Бишкек, 1999.
- 2. Дуйшеналиев Т.Б. Неклассические решения механики деформируемого тела / Т.Б. Дуйшеналиев. М.: Изд-во МЭИ, 2017.
- Работнов Ю.Н. Сопротивление материалов / Ю.Н. Работнов. М.: Физматгиз, 1962.