УДК 621.951.45

ЗАВИСИМОСТЬ СТОЙКОСТИ СПИРАЛЬНЫХ СВЕРЛ ОТ ТВЕРДОСТИ ОБРАБАТЫВАЕМОГО МАТЕРИАЛА ПРИ РАЦИОНАЛЬНЫХ ПАРАМЕТРАХ РЕЖИМА РЕЗАНИЯ

А.П. Муслимов, Н.А. Рагрин, В.А. Самсонов

Приведены зависимости стойкости быстрорежущих спиральных сверл от твердости обрабатываемого материала при параметрах режима резания максимальной стойкости инструмента.

Ключевые слова: сверло; стойкость; наработка; твердость.

DEPENDENCE OF FIRMNESS OF SPIRAL DRILLS ON THE HARDNESS OF THE PROCESSED MATERIAL AT RATIONAL PARAMETERS OF THE CUTTING MODE

A.P. Muslimov, N.A. Ragrin, V.A. Samsonov

Dependences of firmness of fast-cutting spiral drills on hardness of a processed material are resulted at parameters of a cutting mode for the maximum firmness of a tool.

Key words: a drill; firmness; an operating time; hardness.

В связи с тем, что на машиностроительных заводах спиральные сверла составляют от 11,3 до 22,8 % от общего количества используемых инструментов, определенный интерес для машиностроительного производства представляет исследование их стойкости в зависимости от твердости обрабатываемого материала.

В работе [1, с. 45–47] приведены результаты лабораторных исследований, которые показали, что с увеличением твердости обрабатываемого материала стойкость сверл, работающих со скоростями резания, соответствующими диапазону экстремума стойкостной зависимости, уменьшается в основном за счет увеличения интенсивности износа ленточек. В результате лабораторных исследований получена зависимость интенсивности износа ленточек сверл диаметром 10,2 мм от твердости обрабатываемого материала при следующих параметрах режима резания: скорость резания 12 м/мин, подача 0,23 мм/об. На графике (рисунок 1) показана зависимость средней интенсивности износа ленточек сверл диметром 9,8 мм от твердости материала, полученная в результате производственных испытаний сверл [2, с. 37–39]. Условия производственных испытаний представлены в таблице 1.

Таблица 1 – Условия производственных испытаний

Диаметр сверла, d, мм	иаметр сверла, d, мм Скорость, V, м/мин		Твердость, НВ		
9,8	13,8	0,22	200		
10,5	12,6	0,14	300		

В работе [3, с. 81–84] освещены результаты лабораторных исследований влияния подачи на стойкость спиральных сверл, показано, что в диапазоне скоростей резания экстремума стойкостной зависимости ($V = 12 \div 16$ м/мин) зависимость стойкости от подачи также имеет экстремальный характер, максимум которой соответствует рациональной подаче и при уменьшении подачи от этого значения увеличивается интенсивность износа ленточек. Для сверл диаметром 9,8 мм значение рациональной подачи равно 0,23 мм/об и, как видно из таблицы 1, практически совпадает с величиной подачи при производственных испытаниях данных сверл.

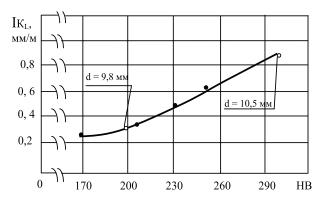


Рисунок 1 — Зависимость интенсивности износа ленточек IKL от твердости обрабатываемого материала

Для сверл диаметром 14,5 мм рациональная подача равна 0,3 мм/об. Интенсивность износа ленточек при рациональной подаче связана с интенсивностью износа ленточек при меньшей подаче следующей зависимостью:

$$I_{K_{L_{PAII}}} = I_{K_{L}} \cdot (\frac{S_{O}}{S_{O_{PAII}}})^{0.91},$$
 (1)

где $I_{K_{L_{PAII}}}$ — интенсивность износа ленточек при рациональной подаче, I_{K_L} — интенсивность износа ленточек при подаче S_O меньшей рациональной, S_O — подача меньшая рациональной, $S_{O_{PAII}}$ — рациональная подача.

В работе [3] предложена зависимость для расчета оптимальной подачи в виде

$$S_{O_{PAII}} = 0.04d^{0.75},$$

Тогда зависимость (1) можно представить следующим образом:

$$I_{K_{L_{PAII}}} = I_{K_{L}} \cdot (\frac{S_{O}}{0.04^{0.75}})^{0.91}, \tag{2}$$

Для сверл диаметром d = 10,5 мм оптимальная подача равна 0,23 мм/об. Как видно из таблицы 1 сверла диаметром 10,5 мм при проведении производственных испытаний работали с подачей 0,14 мм/об, что значительно меньше рациональной подачи, следовательно, при работе с рациональной подачей интенсивность износа ленточек этих сверл можно вычислить по формуле (2). При проведении производственных испытаний средняя интенсивность износа ленточек сверл диаметром 10,5 мм равнялась 1,6 мм/м [2]. Тогда при рациональной подаче 0,23 мм/об вычисленная по формуле (2) средняя интенсивность износа ленточек будет равна 0,87 мм/м. Это значение средней интенсивности износа ленточек сверл диаметром 10,5 мм также помещено на рисунке 1. В результате получен график зависимости средней интенсивности износа ленточек сверл от твердости обрабатываемого материала, который в диапазоне твердости НВ180÷300 можно представить в следующем виде:

$$I_{K_{L \text{ PAU, CP}}} = C \cdot HB^{0.85}.$$
 (3)

Однако, как было отмечено выше, зависимость (2) получена из расчета применения рациональных подач, которые можно рассчитать по формуле, приведенной выше [3]. Используя зависимости (2) и (3) получим зависимость средней интенсивности износа ленточек сверл от твердости обрабатываемого материала, учитывающую влияние подачи в виде

$$I_{K_{\text{IIcp}}} = \frac{C \cdot HB^{0,85}}{\left(\frac{S_{O}}{0,04d^{0,75}}\right)^{0,91}}.$$
(4)

Средняя наработка до отказа равна отношению средней величины износа ленточек при отказе сверл к средней величине интенсивности их износа. В работе [2] показано, что с высокой достоверностью можно принять среднюю величину износа ленточек при функциональном отказе равной величине диаметра сверл. Тогда зависимость средней величины наработки до отказа сверл от твердости обрабатываемого материала и подачи будет иметь вид

$$L_{O_{CP}} = \frac{d^{0.66} \cdot S_O^{0.91}}{C_1 \cdot HB^{0.85}},$$
(5)

где коэффициент $C_1 = 0,0004$ для твердости HB < 230 и $C_1 = 0,001$ для твердости HB > 230.

В таблице 2 представлены результаты производственных испытаний спиральных сверл и результаты расчетов по формуле (5). Как видно из представленной таблицы, скорости резания всех испытанных сверл соответствуют диапазону экстремума стойкостной зависимости. Погрешность расчета по формуле (5) в среднем составила 13,15 %.

,		1 ' '	, ,			
Диаметр сверла, d, мм	9,8	10,5	11,5	12,0	13,8	17,5
Скорость резания, V, м/мин	13,8	12,6	12,6	12,0	12,6	13,8
Подача, $S_{_{\mathrm{O}}}$, мм/об	0,22	0,14	0,18	0,14	0,22	0,2
Твердость деталей, НВ	200	300	200	180	200	190
Средняя наработка до отказа, L_{Ocp} , м	47,7	6,0	32,8	22,9	39,2	36,0
L _{Оср} , м рассчитанная по формуле (5)	31,4	6,2	29,1	26,1	39,4	44,1
Погрешность расчета, %	34,1	3,3	11	12	0,5	18

Таблица 2 – Расчетная средняя наработка до отказа

Таким образом, в результате лабораторных и производственных испытаний сверл получена зависимость средней наработки до функционального отказа сверл от твердости обрабатываемого материала, учитывающая влияние диаметра сверла и подачи в диапазоне скоростей резания экстремума стойкостной зависимости.

Литература

- 1. *Муслимов А.А*. Влияние твердости обрабатываемого материала на стойкость быстрорежущих спиральных сверл / А.А. Муслимов, Н.А. Рагрин, В.А. Самсонов // Вестник КРСУ. 2013. Т. 13. № 7.
- 2. *Рагрин Н.А.* Обеспечение безотказности быстрорежущих спиральных сверл в условиях автоматизированного производства / Н.А. Рагрин // Машиностроитель. 2012. № 7.
- 3. *Рагрин Н.А.* Оптимальные подачи спиральных сверл в условиях автоматизированного производства / Н.А. Рагрин // Материалы VI Междунар. науч.-практ. конф. "Техника и технология: новые перспективы развития". М., 2012.