УДК 621.951.45

ЗАВИСИМОСТЬ НАРАБОТКИ СПИРАЛЬНЫХ СВЕРЛ ОТ ИХ ДИАМЕТРА ПРИ РАЦИОНАЛЬНЫХ ПАРАМЕТРАХ РЕЖИМА РЕЗАНИЯ

А.П. Муслимов, Н.А. Рагрин, В.А. Самсонов

Приведены зависимости наработки от диаметра быстрорежущих спиральных сверл при параметрах режима резания соответствующих максимальной стойкости инструмента.

Ключевые слова: сверло; стойкость; наработка; диаметр; экстремум.

DEPENDENCE OF THE OPERATING TIME OF SPIRAL DRILLS ON THEIR DIAMETER AT RATIONAL PARAMETERS OF THE CUTTING MODE

A.P. Muslimov, N.A. Ragrin, V.A. Samsonov

Dependences of the operating time on diameter of fast-cutting spiral drills are resulted at parameters of a cutting mode for the maximum firmness of a tool.

Key words: a drill; firmness; an operating time; diameter; an extremum.

В общем объеме централизованного производства режущих инструментов наибольший удельный вес занимают спиральные сверла (около 30 %), поэтому большой практический интерес представляют исследования их стойкости.

В работе [1, с. 78–80] проведен корреляционный анализ взаимосвязи между диаметром сверл и их средней наработкой до функционального отказа в метрах ($L_{\rm OCPM}$) по результатам производственных испытаний. Корреляционный анализ показал абсолютное отсутствие взаимосвязи между ними. Коэффициент линейной корреляции Пирсона составил $r_{\rm dLcpm} = -0.161$, при доверительном интервале 0,805–0,991. На основании этого сделан вывод, что в условиях автоматизированного производства диаметр сверла не оказывает существенного влияния на стойкость, выраженную суммарной длинной просверленных отверстий.

Однако общепринятые формулы отражают прямо пропорциональную зависимость между периодом стойкости и диаметром сверл [2]. В таблице 1 приведена средняя наработка сверл до их функционального отказа, выраженная в часах ($L_{\text{осрч}}$, час).

Таблица 1 – Средняя наработка до отказа в часах

Диаметр сверла, d, мм	9,8	11,5	12,0	13,8	17,5
Средняя наработка до отказа в часах, $L_{\text{осрч}}$, ч	8,0	8,7	8,56	10,2	13,3

В отличие от наработки до функционального отказа, выраженной в метрах $L_{\text{ОСРМ}}$, часовая наработка имеет тенденцию к увеличению при увеличении диаметра сверла. График зависимости $L_{\text{ОСРЧ}} = f(d)$ показан на рисунке 1. Эта зависимость может быть представлена в виде

$$L_{\text{OCPY}} = 3,58d^{0,4}. \tag{1}$$

Фактически наработка в метрах характеризует количество изготовленных деталей, тогда как ее выражение в часах характеризует время, за которое эти детали были изготовлены. Однако увеличение времени на изготовление деталей без увеличения их количества с ростом диаметра сверл отнюдь не является положительным фактором. Возникла необходимость определить причины и факторы, в силу которых такая закономерность имеет место.

В работе [1] показано, что между диаметрами сверл и их средней интенсивностью износа ленточек при отказе существует тесная взаимосвязь. Коэффициент линейной корреляции Пирсона равен $r_{dLcpm}=0,956$. При доверительном интервале 0,621-0,928.

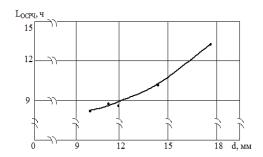


Рисунок 1 – Зависимость средней часовой наработки до функционального отказа от диаметра сверл

Средняя интенсивность износа ленточек рассчитывалась по формуле

$$I_{K\Pi CP} = K_{\Pi CPO} / L_{OCPM}, \tag{2}$$

 $I_{\rm KJCP} = K_{\rm JCPO} / L_{\rm OCPM}, \eqno(2)$ где $K_{\rm JCPO} -$ средняя величина износа ленточек при отказе сверл.

Из формулы (2) следует, что средняя интенсивность износа ленточек растет или при увеличении средней величины износа ленточек при отказе сверл $K_{_{\rm ЛCPO}}$, или при уменьшении средней наработки до отказа $L_{\text{осрм}}$. Корреляционный анализ, результаты которого представлены в работе [1], не выявил наличия взаимосвязи между средней наработкой до отказа, выраженной в метрах, и диаметром сверл. Корреляционный анализ взаимосвязи

между диаметром сверл и средней величиной износа ленточек при их отказе показал наличие тесной взаимосвязи между ними. Коэффициент линейной корреляции Пирсона равен $r_{dLcpm} = 0,96$ при доверительном интервале 0,621-0,928. Таким образом, средняя интенсивность износа ленточек с увеличением диаметра сверл возрастает за счет увеличения средней величины износа ленточек при отказе инструмента, а средняя наработка до функционального отказа, выраженная в метрах, не зависит от диаметра сверла.

Часовая наработка связана с наработкой, выраженной в метрах следующим образом:

$$L_{\text{\tiny OCP}} = \frac{1000L_{\text{\tiny OCPM}}}{60S_{\circ} \cdot n} = \frac{L_{\text{\tiny OCPM}} \cdot \pi \cdot d}{60S_{\circ} \cdot V},$$
(3)

где d – диаметр сверла, мм, $S_{\rm O}$ – осевая подача, мм/об, V – скорость резания м/мин, n – частота вращения шпинделя станка, об/мин.

Из представленной формулы следует, что при отсутствии тенденции к возрастанию наработки до отказа в метрах $L_{\text{осрм}}$, и постоянных скорости резания и подаче часовая наработка $L_{\text{осрч}}$ увеличивается с увеличением диаметра сверла.

Используя зависимости (1) и (3) получим формулу для расчета средней наработки до функционального отказа в метрах

$$L_{OCPM} = \frac{68,4S_O \cdot V}{d^{0.6}}. (4)$$

В таблице 2 представлена рассчитанная по формуле (4) средняя наработка до отказа сверл. Сравнение величины наработки, рассчитанной по формуле (4) с фактическими средними наработками, полученными в результате испытаний, показало, что погрешность расчетов не превышает 13,1 % и в среднем составляет 6,3 %.

Таблица 2 – Средняя наработка до отказа

Диаметр сверла, d, мм	9,8	11,5	12,0	13,8	17,5
Средняя наработка до отказа, $L_{\text{осрм}}$, м	47,7	32,8	22,9	39,2	36,0
$L_{\mbox{\tiny OCPM}}$ рассчитанная по формуле (4), м	52,8	32,7	25,9	39,3	33,9
Погрешность расчета в %	10,7	0,3	13,1	0,25	5,8

В работе [3, с. 81–84] показано, что в диапазоне скоростей резания экстремума стойкостной зависимости существуют рациональные подачи, при которых стойкость сверл максимальная. Рациональную подачу можно определить по формуле

$$S_{Opau} = 0.04d^{0.75}. (5)$$

Используя зависимости (4) и (5) и значение скорости резания экстремума стойкостной зависимости [1] (V = 13,5 м/мин), получим формулу для расчета максимальной средней наработки до функционального отказа в метрах:

$$L_{\text{OCPMmax}} = 37d^{0.15}.$$
 (6)

Из таблицы 3 видно, что при работе со скоростью резания экстремума стойкостной зависимости и с рациональными подачами наработка сверл незначительно увеличивается с увеличением диаметра сверла. Анализ результатов производственных испытаний, представленных выше, показал отсутствие взаимосвязи между диаметром сверл и их средней наработкой до функционального отказа в метрах. Причиной этого является применение заниженных подач, вместо рациональных (см. таблицу 3). У сверл диаметром 9,8 мм $S_{\rm O} = S_{\rm Opan}$, их средняя наработка до отказа максимальная (см. таблицу 2).

Таблица 3 – Средняя максимальная наработка до отказа и подача

Диаметр сверла, d, мм	9,8	11,5	12,0	13,8	17,5
L _{ОСРтах} , рассчитанная по формуле (6)	52,1	53,4	53,7	54,8	56,8
S ₀ фактическая, мм/об	0,22	0,18	0,14	0,22	0,2
S _{Орац,} рассчитанная по формуле (5), мм/об	0,22	0,25	0,26	0,29	0,34

Таким образом, влияние диаметра сверла на их наработку в метрах выражается зависимостью $L_{\text{ОСРМ<math>max}} = 37\text{d}0,15$ при скорости резания экстремума стойкостной зависимости и рациональных подачах.

Литература

- 1. *Муслимов А.П.* Влияние глубины резания на стойкость сверл в условиях автоматизированного производства / А.П. Муслимов, Н.А. Рагрин, В.А. Самсонов // Вестник КРСУ. 2013. Т. 13. № 4.
- 2. Бобров В.Ф. Основы теории резания металлов / В.Ф. Бобров. М.: Машиностроение, 1975. 344 с.
- 3. *Рагрин Н.А.* Оптимальные подачи спиральных сверл в условиях автоматизированного производства / Н.А. Рагрин // Материалы VI Междунар. науч.-практ. конф. "Техника и технология: новые перспективы развития". М., 2012.