УДК 620.197.3:547.333.3:547.339.2

К ВОПРОСУ ОБ ЭВОЛЮЦИИ НАУЧНОЙ КАРТИНЫ МИРА (ЧАСТЬ 2)

К.М. Алиева

Представлено становление категории «научная картина мира»; рассмотрены ее типы, формы, виды, эволюция.

Ключевые слова: научная картина мира; системный и синергетический подходы; принцип глобального эволюционизма.

TO THE QUESTION OF EVOLUTION OF THE SCIENTIFIC PICTURE OF THE WORLD (PART 2)

K.M. Alieva

In article is presented formation of the category of the scientific picture of the world; its types, forms, species, evolution are considered.

Key words: scientific picture of the world; system and synergetic approaches; principle of a global evolutionism.

В структуре научной картины мира выделяют: наличие устойчивого центрального теоретического ядра, а также второго «защитного» изменчивого мобильного, полиморфного и метастабильного слоя фундаментальных допущений и частных моделей. Тогда она представляет научно-исследовательскую программу и выполняет познавательные функции. И выделяют следующие типы научной картины мира: специальную как дисциплинарную онтологию (биологическую, химическую и т. д.) и общую как системно-структурную характеристику предметной области научного познания целого мира. Различают естественнонаучную и гуманитарную формы научной картины мира, которые имеют различные виды, к примеру, химическую, политическую и т. д. Общая научная картина мира представляет интегративную совокупность фундаментальных принципов развития природы, общества и человека, т. е. представляет целостность естественнонаучной и гуманитарной форм научной картины мира. Вследствие открытости различных научных картин мира и благодаря высокой подвижности и мобильности «защитного» слоя происходит их взаимодействие с различной динамикой развития. Взаимодействие специальных научных картин мира выводит к становлению междисциплинарных наук. А при изменении философских оснований научной картины мира происходят научные революции.

Научная картина мира как форма научного знания обладает собственными методологическими функциями: эвристической, интерпретационной, теоретической, коммуникативной, а также такими важнейшими параметрами, как интегративность, нормативность, интегральность.

В истории первую систематизацию естественнонаучного знания предложил Аристотель как простое различение: «три основные рода наук: науки, рассматривающие предметы объективного мира («теоретические»); науки о человеческой деятельности и ее результатах («практические») науки; науки о творчестве человека и его продуктах («поэтические»)» [1]. Им был эксплицирован категориально-понятийный инструментарий познания в лице формальной логики, который он детерминировал в «органон» как организацию изучения природы. Это систематизированное знание обозначают в науке особо как аристотелевскую картину мира (VI-IV вв. до н. э.). Она действительно представляет палитровый обзор знания и энциклопедична, но обладает достоверностью собственного концептуального обоснования: понятные античности и не совсем понятные сегодня под- и надлунные миры и лишена строгого соответствия современной дефиниции «научная картина мира». Выделив два разных принципа устройства природы, она нанесла серьезный вред науке, но внесла свой вклад в мировоззрение, например, в религию.

Только на основе принципа непрерывности объективной реальности удастся описать мир как целостность – универсум: И. Ньютон создает механистическую картину мира (XVII-XIX вв.) и объединяет в один эти два мира Аристотеля. Эта специальная научная картина мира обосновывает единство мира принципом гравитации и силой всемирного тяготения. И в таком новом мире произошел переход от птолемеевской геоцентрической модели мира к коперниканской гелиоцентрической. Но он вышел за пределы видения физического мира и обозначил первую научную революцию. Именно эта - первая классическая научная картина мира (в соответствии с утверждением М. Планка). И она имеет основополагающее обоснование единой целостности. Заслуга великого алхимика И. Ньютона неоценима: сделано дедуктивное обобщение достижений экспериментальной физики своего времени в точной линейной форме математического закона. Однако мир, мир «средних размеров» имел другую крайность: этот единый застывший, механистический неделимый мир надолго (до А. Эйнштейна и М. Планка) не предполагает альтернативы, так как фундаментально опирается на детерминированность прямой причинно-следственной связности. И его основу составляют классические принципы линейности, обратимости и равновесия.

К концу XIX в. в классической науке разрабатывают основы энергетической научной картины мира. В целостном видении мира связующей нитью выступает закон сохранения энергии в совокупности трех термодинамических начал, приоритетные принципы которых остаются теми же: линейность, дискретность, детерминация. Характеристическими красками этого образа мира являются два феномена: впервые проявляется междисциплинарное взаимодействие научного знания, и возникают новые науки, к примеру, физическая химия. Так, предмет исследования этой химической дисциплины есть вещество и его превращение, но методологический инструментарий большей частью составляют физические методы: термодинамики, статистический и далее квантово-механический. И, следовательно, в его химическом языке преобладают теоретические формализованные математические выражения. Именно этот информационный инструментарий интегро-дифференциального исчисления вывел стиль научного мышления на иной теоретический уровень абстрагирования. С момента полной математизации научного языка признается состояние развитой науки, к примеру, физхимия, а научная картина теперь представляет наиболее системное образование научного знания. Энергетическая научная картина мира занимает

определяющее место в мировоззрении позитивного индустриального общества с его нарастающим научно-техническим прогрессом. В эпистемологии появляется первое допущение: теперь отдельную науку (к примеру, физхимию) определяет не только ее предмет, но и методы исследования. Но междисциплинарная тенденция вызывает далее возникновение биохимии как следствие понимания химического превращения и в живом. Плодотворность биохимических достижений отодвинуло в тень этого события даже пресловутый естественнонаучный редукционизм. Нарастание этого междисциплинарного взаимодействия приводит к появлению новых наук, основанием которых являются не только метод и предмет исследования, но и введение в предметное поле постнеклассической науки топологических параметров и дробных размеров вещества. В начале XXI в. возникает новое направление в химии – нанохимия, нанотехнология и т. д. Смысл технологического детерминизма и его решающее регулятивное значение в социо-экономических и политико-управленческих явлениях имеет прямое отношение к междисциплинарному взаимодействию экономических наук. Так, впервые именно по предложению Нобелевского лауреата в области физической химии В. Содди (1877–1956) производство единицы продукции стали определять не трудом человека (как человеко-часами), а количеством энергии, полученного или затраченного машинами (в форме киловатт-часов). Так, закончилось полное отчуждение человека из его индустриального мира.

Вторым феноменом классического периода является утверждение фундаментального принципа системности мира. Идея системы пришла из аристотелевского познания. Она содержала понятие связности. Но в энергетической научной картине мира система выступила до объекта познания. Философское обобщение и экспликация сущности системы как категории проведены в диалектике Г.В.Ф. Гегелем, далее продвинуто К. Марксом до процесса. Так, диалектический материализм эксплицировал онтологическую основу причинно-следственности сложных явлений и детерминировал развитие до принципов системности процесса. Действительно ли их существование в природе или исследователь вносит «системный» инструментарий методологии как результат познавательной рефлексии и тем самым осуществляется только взаимодействие субъективных понятий и объективной действительности? Это новый аспект старой кантовской гносеологической дилеммы соотносимости познаваемого и познающего. Возникают онтологические трудности, а их значение велико, поскольку далее системы становятся созданной составляющей активного реального мира. Системность как принцип научного описания мира есть необходимое, но не достаточное условие. Ибо способ вычленения системы из ее среды – это релятивистское ограничение познающего наблюдателя. И это есть важный методологический вывод, исходящий при философском осмыслении сложности мира как системы и процесса. И сегодня общепринятое описание целостной сущности системы через состав и взаимосвязи компонентов представляет неразрывное единство со средой.

Альтернативность изменения классического мира научная рациональность вводит в конце XIX в. через вероятностно-статистическое состояние электродинамической научной картины. Эту картину в физике традиционно относят к промежуточной. Действительно ли, что она – этюд? В современной эпистемологии она заслуженно исполняет одну из первостепенных ролей. Так, в классический период познания эволюция научного знания, ее динамика и рост все еще имеет свою, собственную сложную траекторию диалектических противоречий. Но уже намечено целое проблематическое поле становления иной научной картины мира и перехода от бытия субстанционального к бытию процессуальному. И если физическая реальность – процесс, благодаря метафизической категории деятельности или ένέργεια, открыта термодинамикой Нового времени, то процессуальность доказана неравновесной термодинамикой XX в. благодаря другой метафизической дихотомии: порядок - хаос. Кроме систематизации научная картина мира должна обладать мощным эвристическим орудием. Ни энергетическая картина, которая ввела в науку понятие энтропии как условность баланса равновесных изменений, ни электродинамическая, связавшая вероятность процесса с его энтропией, не смогли дать гарантированный прогноз стабильности являющегося мира. В специальной научной картине того времени энтропия успешно выполняла функцию сбалансирования вероятных возможностей: статистический мир еще не грозился своей виртуальностью, параллельностью и ветвлением. Но осмысление понятийного содержания энтропии как функции состояния есть прерогатива философской рефлексии. Однако в диалектике природы авторитетное классическое материалистическое осмысление движения в рамках концепции форм движения материи (механическое, физическое, химическое, биологическое, социальное) отвергает не только эффективность энтропии, а признает ее абсурдность, опираясь на закон сохранения массы и энергии. На основе своей концепции Ф. Энгельс предлагает классификацию наук, декларирует основные онтологические аспекты, а следовательно, и диалектическую научную картину мира как обязательный фрейм развития. Отсюда исчезало все многообразие мира. Так как различение в методологии науки пяти форм движения материи привело к частным научным картинам мира, мир, с легкой руки этого диалектического материализма, расчленился. Следовательно, категория научная картина мира не всегда может выполнять онтологическую функцию в становлении мировоззрения человека. Имеет ли место это разделение в объективной действительности? Мировоззренческое значение и философское смысловое содержание понятия энтропия Ф. Энгельс увидел только как потерю, исчезновение материи и привел в доказательство несотворимости материи [2]. Естествознание еще не обосновало сущность энтропии как меру неупорядоченности. Известно, что Р. Клаузиус, в соответствии с атомно-молекулярной природой материи из существования некомпенсированной теплоты в неравновесии, ввел функцию состояния и назвал энтропией. Но методологическая уверенность в энергии как в идее всеобщего эквивалента движения стала основой «ошибочного направления в естествознании «энергетизма», которое возглавил талантливый немецкий физико-химик В. Оствальд. Эта ошибка вызвала естественнонаучное доказательство деградации Вселенной. И наступил мировоззренческий кризис периода «энергетической» картины мира. В 1872 г. Л. Больцман впервые устанавливает взаимосвязь энтропии и вероятности. Но тогда вероятностная сущность всех явлений и флуктуации порядка скрывают определенность событий и вызывают нестабильность. Отсюда важно, что в 1906 г. эта математическая осторожность физхимика вызывает непредсказуемый страх человека, свыкшегося с линейной определенностью классического ньютонианского механицизма. Это социальный феномен имел трагический исход, как известно, и для самого автора этой гипотезы. И в уже наступившем вероятностном мире человек впервые чувствует себя неуютно, но он принял его существование и согласился на примирение различных мировоззрений. Ведь в статистических, в том числе и социальных, системах небольшие вариации на уровне индивидуальности не имеют значения. Умозаключения Л. Больцмана являются также веским доводом относительно методологического принципа целостности, а не суммы частей, который перерос в «организменческий» принцип Л. фон Берталанфи: «Системы повсюду». Таким образом, в недрах научной картины мира классического периода назревал: квантово-релятивистский и системный подходы к описанию мира.

В первой четверти XX в. квантово-релятивистский подход разработал основные положе-

ния неклассической научной картины мира. Но системный подход исследования объектов стал широко употребляться в конце 1960-х гг. и представляет междисциплинарное философско-методологическое и научное направление. И в этом смысле в неклассической научной картине проявилась активность ее методологических функций в систематизации как научного метода. В XX в. системный подход эффективно используется при исследовании сложных явлений различной природы: социальной, экономической, политической, биологической, химической и т. д. Эти объекты отличает многоуровневая, иерархическая, самоорганизующаяся сущность развивающихся открытых систем. Однако постепенно нарастают отклонения и ошибки системных исследований, здесь важно заметить их скрытую кумулятивную суть. Классическая рациональность (термодинамики и кинетики, биологии XIX-XX вв.) выделила в целостности системы совокупность компонентов и интерпретацию сложности в форме открытой системы: обменивающей энергией, веществом и информацией. Но тогда общепринятое понимание открытой, как обменивающейся, системы приводит к исчезновению границ, размытости, поточности изменения и содержит сомнение в определении целостности самой системы. Научное познание и философское осмысление XX в. выявило единство этих явлений как феномен самоорганизации. Этот феномен обнаружен, как и сформировавшийся на его основе в научном познании новый синергетический подход в естествознании, но он эффективно проникает и используется в других областях науки. Но заслуга синергетики не только в новом глубоком нелинейном осмыслении сложных явлений, но и весомом вкладе в реанимацию и в необходимости развития онтологической категории «бытие». И основополагающей посылкой выдвигают взаимодействие. С этого момента синергетика приобретает собственное философское основание как учение о взаимодействии. Взаимодействие универсально, этим и объясняется распространение синергетического подхода. А период его становления как парадигмы научного познания совпадает с формированием научной постнеклассической рациональности и постнеклассической научной картины мира, которая пытается выполнять методологическое обобщение теоретического знания современности.

И здесь самое существенное достоинство составляет гносеологическая концепция синергизма, которая представляет совокупность двух компонентов: 1) таких принципов, выражающих наиболее общие закономерности сложных явлений, как принцип взаимности соотношения линейных отношений детерминированности и системности; принцип минимума генерирования и возрастания энтропии; принцип необратимости; 2) и таких понятий, как диссипация, глобализация, нелинейность, необратимость, неравновесность, неоднородность, неопределенность, вариационность и флуктуационность, фрактальность, неоформленность, разупорядоченность, метастабильность через неустойчивость, открытость, грубость, гомеостазис, разнообразие и множественность, темпоральность, бифуркационность и альтернативность, аттракторы, активность, когерентность, самоорганизация открытых систем, саморегуляция и саморазвитие, самодвижение, самообновление, самопроизводство, самореферентность, аутопоэзис, релевантность.

Концепция синергизма обоснована на том, что сущность изменения заключается в упорядочивании вследствие взаимодействия. А взаимодействие как причина изменений есть проявление внутренней активности или активная деятельность или деятельностность, то есть способ существования. Это условие существования системы (в понимании «связного») во взаимодействии было выделено в диалектике и логике Г.В.Ф. Гегеля еще в XIX в. Как известно аристотелевская диалектика содержала деятельностность, активность или движение в понимании энергии. В 1945 г. И.Р. Пригожин репрезентовал такой диалектический принцип взаимодействия, как причины связанности мира на основе теоремы о «сложности трех тел» А. Пуанкаре и принципа взаимности Л. Онзагера, придав им смысл компоненты синергетического подхода. И энтропия есть определяющая функция порядка как степени активности взаимодействия. Современные метатеоретическая рефлексия и метафизическое видение синергетической картины мира доказывает онтологическую сущность: невзаимодействующий мир есть разорванный, реально несуществующий. В этом его отличие от диалектики, основанной только на созидательном действии противоречий.

Из приведенного категориального ряда синергетики выделяют основополагающие метафизические понятия: сложность, открытость и активность, самоорганизацию. Онтологическое содержание категории «изменение» заключается в открытости и активности взаимодействия. Энтропия — способность (параметр), определяющая форму изменения. Активность представляет степень сложности взаимодействия и показывает интенсивность упорядочивания в изменении. Открытость выступает мерой качественной определенности упорядочивания, т. е. соответствия и соизмеримости к взаимодействию. Они представляют совершенствование как порядок взаимодействия. Активность

и открытость взаимодействия необратимо приводят к неравновесной процессуальности или генерированию режимов разного порядка самоорганизации: от саморегулирования до саморазвития. Такое понимание выводит к дефиниции открытых систем как источников режимов обострения упорядочивания [3].

- В 1970-е гг. в постнеклассической научной картине мира сформировался принцип глобального эволюционизма. Этот период носит название четвертой научной революции. Современный эволюционизм предстает как учение об организации материи, а принцип глобального эволюционизма содержит три основополагающих положения в соответствии:
- с системным подходом изменение есть единая, целостная, универсальная глобальная эволюция простого к сложному. Различают две стадии микро- и макроэволюцию;

- с синергетическим подходом изменение есть самоорганизация как перемежаемость порядка-хаоса: саморегулирование и саморазвитие.
- с философским обоснованием антропного принципа (греч. *antropos* человек), введенного в 1973 г. астрофизиком Б. Картером: изменение «человекоразмерное» явление.

Литература

- 1. Алиева К.М. Философия и синергетика о сложности / ИФиА НАН КР; КНУ им. Ж. Баласагына / К.М. Алиева, А.И. Тишин. Бишкек: Илим, 2003. 360 с.
- Маркс К. Диалектика природы. Сочинения. 2 изд. Т. 20 / К. Маркс, Ф. Энгельс. М.: Политическая литература, 1961. С. 599–601.
- 3. *Князева Е.Н.* Сложные системы и нелинейная динамика в природе и обществе / Е.Н. Князева. URL: http://www.iph.ras.ru/~mifs/rus/kn3.htm