УДК 551.507: 551.524: 550.34

ВАРИАЦИИ ТЕМПЕРАТУРЫ **ВЕРХНЕЙ ТРОПОСФЕРЫ** НАД СЕЙСМИЧЕСКИ АКТИВНЫМИ РЕГИОНАМИ АЗИИ

Л.Г. Свердлик, С.А. Имашев

Представлены результаты диагностирования аномалий температуры, основанные на ретроспективном анализе долговременных спутниковых данных в зоне раздела тропосферы и стратосферы над эпицентрами 10 сильных землетрясений магнитудой М>6,5, произошедших в различных сейсмически активных регионах Азии. Аномальные возмущения температуры наблюдались во всех рассмотренных случаях за 1–8 дней до основного сейсмического события.

Ключевые слова: землетрясение; спутниковые данные; атмосфера; температура; тропопауза; аномалии; уходящая длинноволновая радиация.

VARIATIONS OF UPPER TROPOSPHERE TEMPERATURE OVER SEISMICALLY ACTIVE REGIONS OF ASIA

L.G. Sverdlik, SA. Imashev

The results of diagnosis of temperature anomalies based on retrospective analysis of long-term time-series of temperature in separation zone of troposphere and stratosphere over epicenters of 10 strong earthquakes with magnitude of M>6.5 that occurred in different seismically active regions of Asia are presented. Anomalous temperature perturbations were observed in all the studied cases 1-8 days before the main seismic event.

Keywords: earthquake; satellite data; atmosphere; temperature; tropopause; anomalies; outgoing long-wave radiation.

Введение. Одним из направлений комплексного мониторинга сейсмоактивных областей и взаимодействия геосфер является установление связи между динамикой литосферных и атмосферных процессов при землетрясениях. При этом современной тенденцией при детектировании аномальных возмущений в атмосфере, связанных с сейсмической активностью, является использование средств спутникового дистанционного зондирования, к основным достоинствам которых можно отнести глобальность охвата, регулярность получения данных, возможность исследования пространственно-временной структуры различных параметров атмосферы, в том числе температуры. Тепловые аномалии перед сильными землетрясениями отмечались на разных уровнях, начиная от поверхности земли до верхней границы облаков, и неоднократно регистрировались многими исследователями [1, 2], однако результаты подобных исследований не всегда оказывались однозначными [3].

Между тем, как показали данные спутниковых измерений, в разделенных тропопаузой слоях атмосферы, характеризующихся различным поведением градиента температуры, динамика изменения амплитуды и фазы флуктуаций температуры имеет достаточно устойчивую связь с вариациями сейсмичности [4]. Эти тропосферные эффекты, которые могут быть использованы для краткосрочных прогнозов крупных сейсмических событий, отчетливо проявлялись в период катастрофического землетрясения в Японии весной 2011 г. [5, 6], а также накануне относительно сильных сейсмических событий в Северном Тянь-Шане [7-9]. Основная задача настоящей работы состояла в дополнительной проверке эффективности разработанной авторами методики диагностирования возмущений температуры в области тропопаузы на примере сильных землетрясений, произошедших в сейсмически активных регионах Азии.

Сейсмические и спутниковые данные. В соответствии с поставленной задачей на основе данных интерактивного сервиса IEB [10] был сформирован набор сейсмических данных из числа землетрясений с магнитудами M > 6.5, произошедших в Азии в 2011–2015 гг., для которых доступны результаты спутниковых измерений в системе

		1 1		5		()
Nº	Date	Time	Latitude N	Longitude E	М	Region
EQ01	19.08.1992	18:11:18	42.07	73.63	7.4	Kyrgyzstan, Suusamyr
EQ02	27.12.2011	15:21:56	51.84	95.91	6.6	Russia, Tuva
EQ03	26.02.2012	06:17:19	51.71	95.99	6.7	Russia, Tuva
EQ04	11.04.2012	08:38:36	02.33	93.06	8.6	Indonesia, Sumatra Isl.
EQ05	24.09.2013	11:29:48	27.00	65.51	7.7	Pakistan, Baluchistan
EQ06	12.02.2014	09:19:49	35.92	82.56	6.8	China
EQ07	25.04.2015	06:11:26	28.15	84.71	7.8	Nepal
EQ08	16.02.2015	23:06:27	39.83	142.89	6.7	Japan, Honshu Island
EQ09	12.05.2015	21:12:58	38.90	142.03	6.8	Japan, Honshu Island
EQ10	30.05.2015	02:21:27	27.83	140.49	7.8	Japan, Ogasawara Isl.

Таблица 1 – Характеристики исследуемых сейсмических событий (M>6.5)

визуализации и анализа *GIOVANNI* [11]. Были проанализированы температурные данные в периоды подготовки 9 землетрясений с магнитудами от 6.6 до 8.6, зарегистрированных в различных географических зонах с высокой сейсмической опасностью от экватора до средних широт (таблица 1). Рассмотрено также сильнейшее за последние десятилетия сейсмическое событие в Кыргызстане (Суусамыр; 19.08.1992; M = 7.4), сведения о котором взяты из каталога землетрясений [12].

Временные серии температуры T(t) с 3-х часовым разрешением по времени ($\Delta t = 3h$) были восстановлены по данным спутниковых измерений на 10 изобарических уровнях от 500 до 70 *hPa* над каждым участком размером ±1° от эпицентров землетрясений [10]. Продолжительность рядов наблюдений составляла 12 месяцев для EQ01 и 2–3 месяца до и после каждого из остальных рассматриваемых событий EQ02–EQ10.

Методика обработки временных рядов температуры верхней тропосферы. Временная динамика аномалий температуры (Θ T) на каждом изобарическом уровне рассчитывалась как отклонение текущего значения температуры от среднемесячного уровня (ΔT), нормированное на среднеквадратичное отклонение (σ_{τ}). Полученные ряды $\Theta T(t)$, которые усреднялись в свободной тропосфере (ΘT_{FT}) и области, расположенной выше тропопаузы (ΘT_{TP}), характеризовались противофазными изменениями ОТ вследствие различия поведения градиента температуры ($\gamma_{FT} = \Delta T / \Delta p < 0$; $\gamma_{TP} = \Delta T / \Delta p > 0$). Преобразование временных рядов ΘT_{FT} и ΘT_{TP} выполнялось с использованием метода скользящего "окна", основанного на представлении каждого члена ряда в виде дисперсии некоторого числа (*m*) предыдущих значений. Размер "окна" принимался равным m = 6, что позволило анализировать присутствующие в спектре колебаний короткопериодные вариаций температуры, период которых составляет ~5-8 дней. Вейвлетспектрограммы (рисунок 1) отчетливо выделяют вариации подобного временного масштаба перед крупными землетрясениями.

Диагностирование возмущений температуры основано на расчетах произведения скользящих дисперсий временных рядов аномалий

Рисунок 1 – Вейвлет-спектрограммы временных рядов температуры ($\Delta t = 3h$) в периоды сейсмической активности в Непале (150 hPa) (a) и в России (500 hPa) (b). Вертикальными линиями показаны моменты сильных землетрясений

Вестник КРСУ. 2018. Том 18. № 4

Рисунок 2 – Динамика изменения: температуры на изобарических уровнях 300, 200 и 100 hPa (a); корреляционной связи между ΔТ для одного момента времени (b); параметра D (c) в 1992 г. (маркером отмечен момент землетрясения M = 7,4 19 августа 1992 г.)

температуры в свободной тропосфере и над тропопаузой:

$$D = D_{\Theta T}^{FT} \cdot D_{\Theta T}^{TP}$$

Параметр *D* значительно превышает единицу при больших значениях $D_{\theta T}$, но существенно меньше единицы в отсутствии флуктуаций температуры, когда естественная изменчивость не выходит за пределы среднемесячных значений ($\Delta T < \sigma_T$), или при воздействии случайных факторов. Данная методика была ранее апробирована на серии сейсмических событий энергетического класса $K \ge 13.0$, произошедших в Северном Тянь-Шане в 2003– 2015 гг., показав, что аномальные возмущения температуры в области тропопаузы над эпицентрами предстоящих землетрясений наблюдались примерно в 70 % случаев [7, 8].

Обсуждение результатов диагностирования аномалий температуры

Суусамырское землетрясение (M = 7.4). 19 августа 1992 г. в Северном Тянь-Шане было зарегистрировано сильнейшее за последние десятилетия землетрясение магнитудой M = 7.4, с которого началась интенсивная активизация сейсмичности. Основное сейсмическое событие сопровождалось большим количеством афтершоков (636 и 527 сейсмических событий в августе и сентябре, что больше обычной годовой нормы). Вариации температуры на изобарических уровнях от 300 до 100 hPa в 1992 г. показаны на рисунке 2, а. Корреляционная связь между временными рядами приращения температуры $\Delta T = T(t_{i+p}) - T(t_i)$ на уровнях 300 и 100 hPa, рассчитанными для одного и того же момента времени в скользящем окне m = 20 дней, показана на рисунке 2, b. Повышение локальных коэффициентов корреляции до R = -0.84 перед сильным сейсмическим ударом связано как с увеличением амплитуды флуктуаций температуры, так и с синхронностью изменений температуры.

Сразу после землетрясения следовало резкое снижение согласованности внутренней динамики рядов, продолжавшееся более двух месяцев. Результаты диагностирования аномалий температуры (параметр D) в разделенных тропопаузой слоях 300-250 и 150-100 hPa демонстрируют область высоких значений D = 2.5 за 8-9 суток до землетрясения (рисунок 2, с). Таким образом, очевидно совпадение по времени единственной за год хорошо выраженной аномалии температуры с периодом подготовки сильного землетрясения.

Аномалии уходящей длинноволновой радиации. Дополнительно для независимого подтверждения образования тепловых аномалий накануне сильного землетрясения были построены карты пространственного распределения среднесуточных значений уходящей длинноволновой радиации (OLR) [13]. На основании этих данных, определяли

Рисунок 3 – Пространственное распределение аномалий уходящей длинноволновой радиации вблизи эпицентра землетрясения: а – 15 августа; b – 18 августа 1992 г.

зональные аномалии для каждого пиксела, как отклонение текущего значения от среднего уровня за предыдущий 5-летний период (1987–1991 гг.) [14]. Расчеты показали, что аномалия OLR, наблюдаемая 15 августа 1992 г., превышала уровень 2σ и примерно повторяла расположение активных региональных разломов (показаны пунктирными линиями), вытянутых в широтном направлении (рисунок 3, а). Спустя трое суток, за 1 день до землетрясения (18 августа 1992 г.) аномалия уходящей длинноволновой радиации была зарегистрирована вблизи эпицентра основного сейсмического удара (рисунок 3, b), что согласуется с аналогичными результатами, полученными ранее для Тянь-Шаньских землетрясений [7]. Землетрясения магнитудой М≥6.5 в сейсмически активных регионах Азии. Особенности теплового режима верхней тропосферы в рассматриваемых сейсмически активных регионах Азии характеризовались существенными различиями, которые определялись, вероятно, интегрированным эффектом физических процессов, развивающихся в атмосфере, и условиями земной поверхности. Одним из таких влияющих факторов являлась, вероятно, и сейсмическая активность. Однако, несмотря на амплитудные и фазовые различия вариаций температуры в области тропопаузы, применение методики позволило выявить закономерности, характерные для всех рассматриваемых событий. В качестве примера на рисунке 4

Рисунок 4 – Временная динамика средних значений аномалий температуры в указанных слоях (a, b) и параметра D (c, d) в России (c 14 ноября 2011 г. по 15 марта 2012 г.) и на Суматре (c 01 января по 31 мая 2012 г.)

Вестник КРСУ. 2018. Том 18. № 4

Рисунок 5 – Результаты диагностирования аномалий температуры атмосферы (*D*) перед землетрясениями в Северном Тянь-Шане (*K*≥13,0) в 2003–2015 гг. (а) и в сейсмически активных регионах Азии (*M*>6,5) в 2011–2015 гг. (b)

представлены временные ряды средних значений аномалий температуры в указанных слоях (верхние рисунки) и произведения скользящих дисперсий (D), рассчитанные по m = 6 предшествующим значениям для землетрясений в России (M = 6,6-6,7) и на Суматре (M = 8,6) в зимний и весенний периоды 2011–2012 гг.

Как видно, области наиболее высоких значений параметра *D* коррелировали с основными сейсмическими ударами. При этом четко выраженные аномалии температуры начинали проявляться за несколько дней до сильных землетрясений и пропадали практически сразу после этих событий.

Результаты диагностирования аномалий T(t), сведенные вместе, и приведенные к одному моменту землетрясения, показаны на рисунке 5, а в виде вариаций параметра D. Для сравнения приведены аналогичные данные по землетрясениям энергетического класса K>13.0 в Тянь-Шане в 2003–2015 гг. (рисунок 5, b). Очевидно, что оба графика демонстрируют подобное поведения областей высоких значений параметра D, которые либо совпадают с сейсмическими ударами, либо предваряют их.

В общем случае эти области соответствуют более интенсивным и коррелированным колебаниям в разделенных тропопаузой слоях атмосферы в течение промежутка времени, определяемого размером скользящего окна, примерно соответствующего полупериоду анализируемой компоненты спектра вариаций температуры (3–4 суток). Критерием аномального поведения температуры во всех рассмотренных случаях являлись значения интегрального показателя *D*, превышающие 1.5. Этот параметр может быть использован в качестве краткосрочного предвестника сильного землетрясения.

Заключение. Анализ спутниковых данных показал, что возникновению рассматриваемой выборки 10 сильных сейсмических событий (M>6.5) в различных регионах Азии, предшествовало аномальное изменение температуры в зоне раздела тропосферы и стратосферы, которое проявлялось за 1–8 дней до основного толчка. Принимая во внимание существенные отличия эпицентров землетрясений по широте и *условиям* земной поверхности, которые определяют особенности теплового режима атмосферы, разработанная методика показала приемлемую эффективность диагностирования аномалий температуры.

Несмотря на положительную статистику результатов диагностирования аномалий температуры в верхней тропосфере пока преждевременно утверждать, что они распространяются на все крупные сейсмические события, соответственно, необходимо проведение дополнительных исследований. Главной целью этих исследований, наряду с расширением статистики, станет построение модели, показывающей, каким образом процессы, происходящие при подготовке землетрясений, вызывают аномальные колебания температуры в верхней тропосфере и противофазные колебания в тропопаузе.

Авторы выражают благодарность сотрудникам NASA GES-DISC за обеспечение свободного *доступа к данным спутниковых измерений, использованным в работе.*

Литература

- Пулинец С.А. Физические основы генерации краткосрочных предвестников землетрясений. Комплексная модель геофизических процессов в системе Литосфера-Атмосфера-Ионосфера-Магнитосфера, инициируемых ионизацией / С.А. Пулинец, Д.П. Узунов, А.В. Карелин, Д.В. Давиденко // Геомагнетизм и Аэрономия. 2015. Том 55. № 4. С. 1–19.
- 2. *Jing F.* Variations of multi-parameter observations in atmosphere related to earthquake / F. Jing, X.H. Shen, C.L. Kang, P. Xiong // Nat. Hazards Earth Syst. Sci. 2013. 13. P. 27–33.
- 3. *Prakash R*. Thermal anomalies in relation to earthquakes in India and its neighbourhood / Prakash R., Srivastava H.N. // Current Science. 2015. V. 108. № 11. P. 2071–2082.
- Кашкин В.Б. Тропосферные эффекты землетрясений в Туве, наблюдаемые с искусственных спутников Земли / В.Б. Кашкин, А.А. Романов, А.С. Григорьев, А.А. Баскова // Журнал СФУ. Техника и технологии. 2012. Т. 5. № 2. С. 220–228.
- Кашкин В.Б. Внутренние гравитационные волны в тропосфере / В.Б. Кашкин // Оптика атмосферы и океана. 2013. Т. 26. № 10. С. 908–916.
- 6. *Имашев С.А.* Вариации температуры атмосферы в период высокой сейсмической ак-

тивности в Японии в 2011 г. / С.А. Имашев, Л.Г. Свердлик // Наука, новые технологии и инновации. 2015. № 1. С. 15–19.

- Свердлик Л.Г. Аномалии температуры атмосферы в периоды сейсмической активности / Л.Г. Свердлик, С.А. Имашев // Журнал Сибирского федерального университета. Серия: Техника и технологии. 2017. Т. 10. № 6. С. 783–793.
- Свердлик Л.Г. Методика диагностирования аномалий температуры атмосферы в периоды сейсмической активности / Л.Г. Свердлик, С.А. Имашев // Вестник КРСУ. 2016. Т. 16. № 5. С. 170–174.
- Свердлик Л.Г. Изменение температурного режима атмосферы под влиянием сейсмической активности / Л.Г. Свердлик, С.А. Имашев // Наука, новые технологии и инновации. 2015. № 4. С. 9–14.
- 10. The IRIS Earthquake Browser (IEB). URL: http://ds.iris.edu/
- 11. The NASA GES-DISC. URL: http://giovanni.gsfc. nasa.gov/
- 12. Каталог землетрясений института сейсмологии НАН КР и Научной станции РАН в г. Бишкеке.
- 13. URL: http://www.esrl.noaa.gov/psd/cgi-bin/
- Venkatanathan N. Outgoing longwave radiations as pre-earthquake signals: preliminary results of 24 September 2013 earthquake (M 7.7) / N. Venkatanathan, V. Natyaganov // Current Science. 2014. V. 106. № 9. P. 1291–1297.