РЕЖИМ СНЕЖНОГО ПОКРОВА НА СКЛОНАХ ЮЖНОГО И ВОСТОЧНОГО ГОРНЫХ ОБРАМЛЕНИЙ ФЕРГАНСКОЙ ВПАДИНЫ

О.А. Подрезов, А.О. Подрезов

Рассматриваются высотные зависимости основных характеристик снежного покрова по наземным, вертолетным и космическим данным для северного склона широтного Алайского хребта и западного субмеридионального склона Ферганского хребта, являющихся южным и восточным горными обрамлениями Ферганской впадины.

Ключевые слова: Ферганский хребет; Алайский хребет; снежный покров.

Снежный покров является важным элементом климата горных районов, обуславливая не только характеристику доли твердых осадков в их общей годовой сумме, но и в значительной мере характер питания рек, интенсивность половодий, паводков и селей [1–3]. В засушливых районах, к которым относится днище Ферганской котловины, возможности весенне-раннелетних накоплений воды в

подгорных водохранилищах определяются прежде всего стаявшим на склонах снегом.

Западный склон субмеридианального Ферганского хребта (средняя высота гребня — 3,6 км) расположен нормально к влагонесущим потокам общей циркуляции атмоферы, что обуславливает наличие здесь области максимального увлажнения в Кыргызстане (до 1500—

2000 мм в году). Сопредельный с ним северный склон широтного более высокого Алайского хребта (средняя высота гребня — 4,5 км) имеет касательный характер к циркуляционным потокам и поэтому характеризуется значительно меньшим увлажнением, несмотря на большие высоты [4]. Оба склона хребта являются соответственно восточным и южным горными обрамлениями Ферганы, питая многочисленные реки этого региона, имея существенный снежный покров при недостаточно изученном его режиме [2, 3].

Целью настоящей работы явилась оценка высотных зависимостей дат и продолжительности залегания устойчивого снежного покрова, его возможной максимальной высоты и поверхностной плотности (водозапаса) по наземным и вертолетным данным, а также динамики заснеженности склонов в весенне-летне-осенний периоды по спутниковым снимкам.

В качестве исходных данных использованы: 1) Климатический справочник [5] и результаты снегомерных съемок 43 метеостанций и метеопостов за 1942–1979 гг., расположенных в диапазоне высот 710–3150 м; 2) наблюдения за снежным покровом в горах на снегопунктах и по вертолетным рейкам за зимы 1973-1988 гг. в среднегорной и высокогорной зонах [6]; 3) обобщенные данные снегопунктов и вертолетных реек САНИГМИ [7]; 4) 9 спутниковых снимков НОАА снежного покрова западного склона Ферганского хребта и бассейна р. Карадарья за теплый период 2009–2010 гг.

1. Даты установления схода и продолжительность залегания устойчивого снежного покрова

Высотные зависимости дат установления (X), схода (Y) и продолжительности залегания (N)

устойчивого снежного покрова были рассчитаны нами путем осреднения таких зависимостей, полученных САНИГМИ [4] для 3 бассейнов рек Ферганского хребта, бассейна р. Тар, являющегося стыком Ферганского и Алайского хребтов, и 4 бассейнов рек Алайского хребта по данным снегопунктов и вертолетных авиареек в среднем за 15 лет (по 1985 г.). Разброс индивидуальных высотных зависимостей, объясняемый спецификой расположения и орографии бассейнов рек, как оказалось, небольшой, так что осредненные зависимости хорошо отражают основные закономерности высотного распределения *X*, *Y* и *N* на склонах Ферганского и Алайского хребтов.

Из табл. 1 следует, что все три вида зависимостей — X(z), Y(z) и N(z) — близки к линейным для разных хребтов. Так, на высоте 1 км снежный покров южного положения хребтов, всюду устанавливается поздно в пределах 15-20 декабря, сходит рано – 8–25 февраля, имея продолжительность всего 50-72 дня (14-20% от года). На высоте 2 км разброс данных существенно больше и эти параметры выглядят так: 23 ноября – 5 декабря, 14 марта – 10 апреля, 99–138 дней (28-38%). На 3 км даты установления снежного покрова смещаются на вторую половину октября – начало ноября (18.10–05.11), даты схода – на май (2.05–30.05), так что продолжительность залегания составляет 161-224 дня (44-61%). Наконец, на предельных высотах 4 км (где имелись наблюдения) снежный покров устанавливается в самом начале октября (1-5.10), сходит только в июле (10–12.07), имея продолжительность около 282 дней (77%).

Из этих данных видно, что на высотах до 1,5–2 км на более многоснежном Ферганском хребте снежный покров устанавливается на 5–10 дней раньше, а сходит примерно на 15 дней

Таблица 1 Высотные зависимости дат установления (X), схода (Y) и продолжительности залегания (N- дни и % в скобках от года) залегания снежного покрова

	Фе	рганский :	хребет		р. Карадај	рья	Алайский хребет			
Z, KM	X	Y	N	X	Y	N	X	Y	N	
1	15,12	25,02	72(20)	20,12	08,02	50(14)	17,12	16,02	58(16)	
1,5	7,12	17,03	100(27)	13,12	28,02	77(21)	10,12	8,03	92(25)	
2	23,11	10,04	138(38)	03,12	25,03	112(31)	5,12	14,03	99(28)	
2,5	7,11	05,05	179(49)	20,11	18,04	129(35)	23,11	6,04	130(36)	
3	18,10	30,05	224(61)	05,11	15,05	161(44)	1,11	2,05	170(47)	
3,5	5,10	3,07	271(74)	15,10	12,06	240(66)	19,10	1,06	226(63)	
4				01,10	10,07	282(77)	5,10	12,07	281(77)	

позже, чем в переходной зоне — бассейне р. Карадарья и на Алайском хребте. На высотах 3,5 км разница в продолжительности залегания составляет около 1,5 месяца. Вертикальный градиент dN/dz, характеризующий увеличение длительности залегания на 1 км высоты, составляет: Ферганский хребет — 80 дней/км, бассейн р. Карадарьи — 77 дней/км, Алайский хребет — 74 дня/км. Относительная близость значений градиентов легко объяснима — режим залегания снега в первую очередь определяется близостью режимов температуры в этом достаточно компактном регионе.

2. Высота и плотность снежного покрова

В табл. 2 приведены оценки высотных зависимостей высоты снега h (см), полученные аналогично п. 1 осреднением данных САНИГ-МИ [7] для западного склона Ферганского хребта, бассейна р. Карадарья и северного склона Алайского хребта, которые соответсвуют дате D — максимального в году водозапаса снега (см. следующий пункт). Если h(z) были получены по данным прямых вертолетных наблюдений за авиарейками, то значения плотностей ρ рассчитаны по формуле САНИГМИ [4] для слежавшегося снега к концу зимы

$$\rho = 0.075h^{0.30} + 0.032,\tag{1}$$

где ρ , г/см³, h, см.

Зависимости h(z) по табл. 2 хорошо аппроксимируются экспоненциальными регрессиями $(z, \kappa m)$:

$$h(z) = 14,343e^{0.8253z}$$
 (Ферганский хребет), (2)

$$h(z) = 7.923e^{0.8603z}$$
 (Алайский хребет), (3)

которым соответствуют высокие индексы корреляции, равные 0,99.

В табл. 2 приведены также средние по всем 8 бассейнам (т. е. исследуемому району в целом) значения h_{cped} и ρ_{cped} и значения Δh (см), характеризующие максимальный разброс оценок h по трем высотным зависимостям табл. 2.

Наглядно видно, что h во всех случаях экспоненциально быстро растет с высотой, причем на Ферганском хребте этот рост выражен намного сильнее. При этом бассейн р. Карадарьи и Алайский хребет по существу описываются одной и той же зависимостью, некоторые различия возникают только на предельной высоте $4 \, \text{км}$.

Так, на высоте 1 км на Ферганском хребте h=35 см, а на Алайском h=16 см, на 2 км эти цифры равны соответственно 70 и 44 см на 3,5 км -268 и 175 км. При этом h_{cped} на этих трех высотах составляет 22, 53 и 206 см. Различия Δh высоки и увеличиваются с высотой от 12–19 см в зоне подножий почти до одного метра в пригребневых областях.

Плотность снега ρ_{cpe0} на дату D высока: она увеличивается с высотой от 0,22–0,26 г/см³ в зоне подножий до 0,28–0,31 г/см³ в зоне 2–2,5 км и 0,35–0,40 г/см³ в зоне 3,5 км и выше.

Эти данные можно существенно дополнить результатами сделанной нами статистической обработки, наблюдений по авиарейкам по бассейнам рек Кугарт (Фергансикй хребет), Яссы (р. Тар) и Исфайрамсай (Алайский хребет) за зимы 1973-1988 гг., которые приведены в табл. 3. В ней для различных высотных зон (через 500 м) показано число случаев наблюдений по авиарейкам n, рассчитанные по этим выборкам h_{cped} , $h_{макс}$, а также коэффициенты вариации c(h) = S

(\$ - среднее квадратическое отклонение). Кро-

Таблица 2

Высотные зависимости высоты снежного покрова h (см) и его плотности ρ (г/см³) на дату D максимального в году водозапаса снега

	Ферганси	кий хребет	Бассейн р	. Карадарья	Алайскі	ий хребет	1.	_	$\Delta h = h$ -h	
Z, KM	h	ρ	h	ρ	h	ρ	h_{cped}	$ ho_{cped}$	$\Delta h = h_{\text{макс}} - h_{\text{мин}}$	
1	35	0,25	16	0,20	16	0,20	22	0,22	19	
1,5	48	0,27	36	0,25	36	0,25	40	0,26	12	
2	70	0,30	44	0,27	44	0,27	53	0,28	26	
2,5	112	0,34	65	0,29	65	0,29	81	0,31	47	
3	170	0,38	100	0,33	100	0,33	123	0,35	70	
3,5	268	0,43	175	0,39	175	0,39	206	0,40	93	
4			205	0,40	235	0,42	220	0,41	30	

ме того, совокупности значений h по каждой высотной зоне были аппроксимирована гаммараспределениями (параметры которых α и β найдены по выборкам) и по результатам аппроксимаций рассчитаны квантильные значения h с обеспеченностью 0,90; 0,95; 0,97 и 0,99.

Прежде всего, отметим большой объем наблюдений по авиарейкам, который по отдельным бассейнам колебался от 167 до 632 (всего 1294 отсчетов), что позволило надежно рассчитать h_{cped} , c(h) и произвести аппроксимации гаммараспределением.

Данные табл. 3 хорошо подтверждают полученные выше (табл. 2) закономерности по режиму h. Кроме того, они позволяют сделать следующие дополнительные выводы. Средние значения h растут в бассейне р. Кугарт от 50 см в зоне 2–2,5 км до 149 см в зоне 3–3,5 км. На стыке хребтов в бассейне р. Яссы этот рост значительно меньше, от 30 до 89 см, а в бассейне р. Исфайрамсай еще меньше, до 36 см в зоне 3–3,5 км.

Коэффициент вариации c(h) высок: он около 1,0 в области 2–3 км, уменьшится до 0,55–0,65 на высотах 3–3,5 км (р. Кугарт и Яссы), но остается большим во всех зонах в бассейне Исфайрамсая, что говорит о значительной внутри – и межгодовой изменчивости режима h.

В соответствии с этим фактически зарегистрированные $h_{\text{макс}}$ при лидирующем положении Ферганского хребта очень высоки: 400 см в бассейне р. Кугарт (зона 3–3,5 км), 260 см в бассейне р. Яссы (зона 2,5–3 км) и 200 см на Алайском хребте (зона 3,5–4 км).

Аналогично высоки и квантильные значения h, которые следует рассматривать как более устойчивые оценки hмакс по сравнению с фактическими зарегистрированными. Так, для высотных зон 3–3,5 км и обеспеченностей 0,90 и 0,99 имеем: Ферганский хребет, h0,90=281 и h0,99=465 см; стык хребтов, h0,90=157 и h0,99=241 см; Алайский хребет h0,90=80 и h0,99=156 см (в зоне 3,5–4 км h0,90=90 и h0,99=195 см).

Все эти данные говорят о возможных весьма больших высотах снежного покрова в высокогорных зонах обоих хребтов и очень больших значениях h на субмеридианальном Ферганском хребте.

3. Поверхностная плотность (водозапас) снежного покрова

Поверхностная плотность снежного покрова S (кг/м²) есть масса снега, приходящаяся на 1 м² земной поверхности. Численно S равна водозапасу толщи снега в мм слоя воды. Это одна

Таблица 3 Статистическая характеристика режима h по данным авиареек за 1973—1988 гг. для трех бассейнов рек

	Статисти	ки по выб	оркам		Ква	нтильные	значения /	ı, cm
Высота, км	Число случаев п	$h_{cped}, \ ext{CM}$	c(h)	<i>h</i> _{макс} , см	0,90	0,95	0,97	0,99
		р	. Кугарт	Фергансі	кий хребет	.)		
2-2,5	216	50	1,02	235	118	154	180	238
2,5–3	252	81	0,96	300	184	237	276	360
3-3,5	164	149	0,66	400	281	338	379	465
Всего	632	88	0,90	400				
	p	. Яссы (ст	тык Фері	анского и	Алайског	о хребтов)		
1,5–2	50	12	1,82	102	35	53	70	105
2-2,5	31	30	0,98	90	69	90	105	137
2,5–3	70	67	0,90	260	148	188	218	281
3–3,5	16	89	0,55	160	157	182	202	241
Всего	167	48	1,16	260				
		р. И	Ісфайрам	сай (Ала	йский хреб	бет)		
2,5–3	41	22	1,28	113	57	78	98	130
3–3,5	188	36	0,95	144	80	103	120	156
3,5–4	206	36	1,16	200	90	121	144	195
Всего	435	35	1,08	200				

из самых важных характеристик, определяющая накопленную в снеге воду.

В табл. 4 приведены усредненные нами по данным САНИГМИ [7] зависимости дат образования максимальных в году водозапасов D и значений самих водозапасов S для Ферганского, Алайского хребтов и зоны их стыка — бассейна р. Карадарья. Как видно, даты D в зоне подножий приходятся на начало февраля, смещаются к 2,5 км на середину-конец марта, а с 3,5 км соответствуют середине апреля — началу мая.

Значения S очень быстро растут с высотой — на Ферганском хребте от 50 кг/м^2 в зоне подножий до 1050 кг/м^2 в области 3,5 км. В бассейне р. Карадарья этот рост гораздо меньше и составляет $30-450 \text{ кг/м}^2$ и он такой же на Алайском хребте. Аналитически зависимости S(z) по табл. 4 очень хорошо аппроксимируются найденными нами экспоненциальными регрессиями (z, км):

$$S(z) = 14.215e^{1.2198z}$$
 (Ферганский хребет), (4)

$$S(z) = 13,488e^{1,01747z}$$
 (р. Карадарья), (5

$$S(z) = 11{,}364e^{1{,}0502z}$$
 (Алайский хребет), (6)

которым соответствуют высокие индексы корреляции, равные 0,99.

По многолетним данным снегосъемок 15 станций, для Ферганского хребта получена аналогичная картина (табл. 5). Зависимость S(z) по данным станций и постов хорошо аппроксимируется показательной регрессией $(z, \kappa M)$

$$S_{cr} = 22,935e^{1,1122z} \pm 34,$$
 (7)

которой соответствует индекс корреляции 0,92 и стандартная ошибка регрессии ±34 мм.

Расчет по (7) приведен в табл. 6, данные которой близко совпадают с данными табл. 1 для Ферганского хребта.

Для Алайского хребта по снегосъемкам на 28 станциях (табл. 5) корреляция *S* с z оказалась

Таблица 4 Усредненные высотные зависимости дат D и значений максимальных в году водозапасов S (кг/м² или мм)

Высота, км	Фергански	й хребет	р. Карад	арья	Алайский	і хребет	ΔS
DBICOTA, KW	D	S	D	S	D	S	макс
1,0	1,02	50	1,02	30	1,02	30	20
1,5	10,02	90	15,02	75	15,02	75	15
2,0	5,03	150	1,03	110	23,02	80	70
2,5	24,03	300	16,03	175	10,03	137	163
3,0	14,04	550	30,03	300	26,03	255	295
3,5	5,05	1050	17,04	450	14,04	450	600
4,0			5,05	750	5,05	830	

Таблица 5 Статистическая характеристика средних из годовых максимумов S для различных высотных зон Ферганского и Алайского хребтов по данным MC

Высотный пояс	Число	$S_{\text{сред}}, \\ \kappa \Gamma / M^2$	S _{make}	Диапазон к	зантилей		
BBICOTHEM HOXE	станций	KΓ/M ²	_{макс} , КГ/М ²	0,90	0,99		
	Ферганский хребет						
Низкогорный (до 1,2 км)	8	69	391	92-199	144-380		
Среднегорный (1,2-2,2 км)	6	129	490	143-384	218-516		
Высокогорный (2,2-3,5 км)	1	519	874	721	979		
	Алайский хр	ебет					
Низкогорный (до 1,2 км)	8	48	391	40-190	63-380		
Среднегорный (1,2-2,2 км)	16	79	441	55-291	84-440		
Высокогорный (2,2-3,5 км)	4	100	273	77-206	119-305		

Физика. Механика. Экология

относительно слабой (r=0,45), но предельные значения S близко совпадают с данными табл. 3.

Таблица 6

Рассчитанные значения средних из годовых максимумов S по регрессии (7) для Ферганского хребта

Z, KM	1	1,5	2	2,5	3	3,5
S, κΓ/м ²	70	122	212	370	645	1124

В табл. 7 приведены результаты полученной нами статистической обработки данных авиареек за 1973-1988 гг. по бассейнам трех рек. Она содержит данные по S, которые аналогичны для h по табл. 4.

Как и следовало ожидать, фактические максимальные $S_{\text{макс}}$ и квантили S по табл. 7 с обеспеченностью 0,99 примерно в два раза превосходят средние из годовых максимумов S по табл. 4, достигая на Ферганском хребте значений около 2140 кг/м², в бассейне р. Яссы (стык хребтов) — 1150 кг/м², а на Алайском хребте — около 750–800 кг/м².

Расчетные данные табл. 4—7 содержат в обобщенном виде всю имеющуюся на сегодняшний день информацию о водозапасе снежного покрова на западном склоне Ферганского и Алайского хребтов, которая при правильном ее использовании позволяет обоснованно решать многие практические задачи, связанные со знанием режима *S*. При этом полученные здесь выводы вряд ли удастся уточнить в ближайшие 5—10 лет, так как наблюдения по авиарейкам и на снегопунктах с 1990 г. прекращены.

4. Спутниковые оценки заснеженности склонов хребтов в теплое время года

В зимнее время склоны Ферганского и Алайского хребтов могут быть полностью заснежены, начиная от их подножья (условно 500–1000 м). Но в теплое время года заснеженной может быть только небольшая верхнегребневая зона. Представление о степени заснеженности склонов и высоте снеговой линии (СЛ) можно получить, используя спутниковые снимки и ГИС-технологии для их обработки и анализа.

Такая работа в качестве примера выполнена для 9 дат теплого периода 2009–2010 гг.

Таблица 7

Статистическая характеристика режима S по данным авиареек за 1973—1988 гг. для трех бассейнов рек

Danasana	Статистик	и по выбој	ркам		Кван	тильные з	вначения Ѕ	, κΓ/м ²
Высота, км	Число случаев <i>п</i>	$S_{\text{сред}}, \\ \kappa\Gamma/\text{M}^2$	c(S)	$S_{\text{макс'}}$ $K\Gamma/M^2$	0,90	0,95	0,97	0,99
		p. I	Кугарт (С	Ферганскі	ий хребет)			
2–2,5	157	225	0,84	982	477	598	687	875
2,5–3	208	358	0,91	1341	786	1002	1161	1498
3–3,5	155	629	0,73	1938	1239	1517	1717	2137
Всего	520	398	0,83	1938				
	p	Яссы (сты	к Ферга	нского и	Алайского	хребтов)		
1,5–2	22	70	1,18	339	182	242	299	390
2-2,5	21	126	0,67	289	248	289	324	400
2,5–3	60	275	0,91	1117	603	770	890	1150
3–3,5	15	283	0,62	601	522	621	695	845
Всего	118	211	0,88	1117				
		р. Ис	фамрайс	ай (Алай	ский хребе	ет)		
2,5–3	29	84	1,12	386	207	284	345	440
3–3,5	159	122	0,93	526	197	342	393	502
3,5–4	193	116	1,36	799	310	436	532	741
Всего	381	116	1,19	799				

Расчеты заснеженности и положения снеговой линии

Ферганский хребет

Дата	02.04	18.04	02.10	11.07	20.07	17.08	24.08	18.09	29.09
Заснеженность,%	40	35	30	4	3	1	1	0	1
Высота СЛ, м	2491	2642	2796	3991	4153	4486	4558	4616	4366

Бассейн р. Карадарья

Дата	10.03	08.04	24.04	25.05	26.06	20.07	17.08	18.09	29.09
Заснеженность,%	91	65	37	35	12	6	3	1	7
Высота СЛ, м	1393	2227	2974	3037	3708	3962	4161	4414	3895

Высотное распределение заснеженности различных зон

Ферганский хребет

	1								
Дата	Высота, км	0,5–1,5	1,5–2	2-2,5	2,5–3	3–3,5	3,5–4	4–4,5	4,5–4,7
2 апр.	заснеж.%	0	1	27	73	92	97	99	100
18 сент.	заснеж.%	0	0	0	0	0	1	3	6

Бассейн р. Карадарья

Дата	Высота, км	1,1-1,5	1,5–2	2-2,5	2,5–3	3–3,5	3,5–4	4-4,5	4,5–4,7
10 мар.	заснеж.%	31	95	100	100	100	100	100	100
18 сент.	заснеж.%	0	0	0	0	0,1	2	13	47

студентами-метеорологами 5 курса М.О. Карасевой и Д. В. Рыскалем по снимкам спутника NOAA из архива Кыргызгидромета. Расчеты заснеженности и положения снеговой линии были сделаны для западного склона Ферганского хребта, бассейна р. Карадарьи и дали следующие основные результаты (см. выше).

Хорошо видно, что заснеженность западного склона Ферганского хребта в апреле составляет 30–40%, в июле-августе уменьшается до 1–4% и, видимо, минимальна в середине сентября (менее 1%), к концу которого она увеличивается до 1%. Снеговая линия (условная линия, выше которой склон имеет заснеженность более 50%) имеет в начале апреля высоту около 2,5 км, к августу-сентябрю она повышается до 4,5 км и в конце сентября начинает снижаться.

На северном (теневом) склоне Алайского хребта (бассейн р. Карадарьи) эти параметры иные. Степень заснеженности в марте достигает 91%, снижаясь в апреле до 65%, а к августусентябрю до 1–6%. Минимальная заснеженность (1%) наблюдается как и на Ферганском хребте, в середине сентября, к концу которого она увеличивается до 7%. Снеговая линия в марте лежит на высоте всего 1,4 км, затем растет к сентябрю до 4,4 км (как и на Ферганском

хребте), с конца которого она также начинает снижаться.

В заключение приведем по два примера высотного распределения заснеженности различных зон для имеющихся самой ранней весенней даты и сентябрьской даты, из которых наглядно видно влияние ориентации склонов хребтов на высотное распределение степени их заснеженности (см. выше).

Приведенные высотные зависимости характеристик режима снежного покрова рекомендуются нами к практическому использованию как важные характеристики климатических условий Ферганского и Алайского хребтов.

Литература

- 1. *Леухина Г.Н.* Районирование Средней Азии по снеговым нагрузкам / Тр. САРНИГМИ. 1978. Вып. 57 (38).
- 2. *Подрезов О.А.* Горная метеорология и климатология. Бишкек: КРСУ, 2000.
- 3. Подрезов О. А. Численная характеристика высотных зависимостей метеорологических величин на территории Кыргызстана // Вестник КРСУ. Т. 10. №5. Бишкек, 2010. С. 143–148.
- 4. Атлас Киргизской ССР. Природные условия и ресурсы. ГУГК. М., 1987.

теоиздат, 1969.

5. Справочник по климату СССР. Часть 4. Влаж-

6. Материалы наблюдений над снежным покро-

ности воздуха, атосферные осадки, снежный покров. Вып. 32. Киргизская ССР. Л.: Гидроме-

вом в горах (Маршрутные и аэродистанци-

онные снегомерные съемки и наблюдения по суммарным осадкомерам). Фрунзе: Кыргызги-

Методические рекомендации по определению

характеристик режима снежного покрова в горах Средней Азии/ САНИГМИ. Ташкент, 1988.

дромет. 1973–1977: 1979–1980: 1985–1988.

Физика Механика Экология