УДК 616.248-085:615.834:612.275.1:612.112.3(575.2)(04)

МОНОНУКЛЕАРНЫЕ ФАГОЦИТЫ У БОЛЬНЫХ БРОНХИАЛЬНОЙ АСТМОЙ ПРИ ВЫСОКОГОРНОЙ КЛИМАТОТЕРАПИИ.

Д.М. Мирбакиева

Изучалась система мононуклеарных фагоцитов у больных бронхиальной астмой при горноклиматическом лечении на перевале Туя-Ашу. Выявлено, что наряду с выраженным клиническим эффектом, улучшались показатели системы мононуклеарных фагоцитов, которая по многим параметрам приближалась к норме.

Ключевые слова: бронхиальная астма; мононуклеарные фагоциты; горноклиматическое лечение; нейтрофилы; макрофаги.

Известно, что система мононуклеарных фагоцитов, работающая в тесной кооперативной связи с Т- и В-лимфоцитами, принимает активное участие в поддержании иммунологического гомеостаза в условиях природной гипоксии [1, 2, 4, 5]. Состояние мононуклеарных фагоцитов в условиях высокогорья у больных атопической формой бронхиальной астмы до настоящего времени изучено недостаточно. В ряде исследований сообщается о положительном влиянии горного климата на больных бронхиальной астмой [1, 6, 12].

Целью данного исследования являлось изучение функционального состояния мононуклеарных фагоцитов в сопоставлении с функциональной активностью нейтрофилов у больных атопической формой бронхиальной астмы при высокогорной климатотерапии.

Материал и методы. Было обследовано 29 больных атопической формой бронхиальной астмы в возрасте от 18 до 50 лет мужчин — 16, женщин — 13. По тяжести течения это были больные в основном со среднетяжелым течением заболевания. В этих же условиях нами было обследовано 12 практически здоровых лиц в возрасте от 17 до 42 лет (8 мужчин и 4 женщины). Исследование проводили в динамике: фоновое в г. Бишкеке (760 м), затем на 3–5 и 25–30 дни пребывания в высокогорном стационаре, расположенном на перевале Туя-Ашу (3200 м над ур. моря).

Изучали функциональное состояние моноцитов, нейтрофилов, определяли поглотительную способность клеток, состояние их рецепторного аппарата, активность кислородзависимого метаболизма [8, 16]. Оценку фагоцитарной активности моноцитов и нейтрофилов периферической крови у больных проводили в тесте с монодисперсными частицами латекса [9, 11]. Определяли фагоцитарный показатель (ФП), фагоцитарное число (ФЧ) и интегральный фагоцитарный индекс (ИФИ). Рецепторы для Fсфрагмента иммуноглобулинов и Сз-фракции комплемента моноцитов оценивали в тестах ЕА-и ЕАС-розеткообразования моноцитов (РОМ). Оценку бактерицидности проводили с помощью нитросинего тетразолиевого теста (НСТ) [9]. Определяли количество диформазан положительных клеток, вычисляли средний цитохимический коэффициент (СЦК) реакции [7, 10].

Оценка содержания лизосом в цитоплазме моноцитов отражает кислородзависимые механизмы бактерицидности и может использоваться в качестве одного из тестов, отражающих функциональную полноценность моноцитов [11, 14, 15]. Содержание лизосом в моноцитах мы проводили по суммарному индексу люминисценции (СИЛ). Все материалы обработаны статистически с расчетом t-критерия Стьюдента.

Результаты и их обсуждение. В результате проведенного исследования было выявлено, что относительное и абсолютное содержание моноцитов у больных атопической формой бронхиальной астмы было сниженным по сравнению с данными практически здоровых лиц при фоновом исследовании. В острый период адаптации у больных атопической формой бронхиальной астмы отмечалось повышение как относитель-

Таблица 1

Количество лейкоцитов и моноцитов в периферической крови у больных атопической формой бронхиальной астмы при высокогорной климатотерапии (М ±m)

Показатели	г. Бишкек, 760 м	Перевал Туя-Ашу (3200 м)	
	фон	3-5 день	25-30 день
Количество лейкоцитов в 1 л крови (10 ⁹ /л)	5,72±0,22	6,25±0,29	$6,74\pm0,28^{x}$
	5,71±0,52	6,37±0,49	7,23±0,41
Количество моноцитов, %	3,57±0,41*	$7,78\pm0,56^{x}$	$7,4\pm0,56^{x}$
	5,92±0,50	7,0±0,41	6,83±0,83
В 1 л крови (109/л)	0,20±0,03* 0,33±0,04	0,49±0,04× 0,45±0,05	$\frac{0.51\pm0.04^{x}}{0.51\pm0.05}$

Примечание. в числителе – показатели у больных, в знаменателе – у здоровых лиц; х- результат достоверно отличается от исходных данных; * – от здоровых лиц (P < 0.05).

ного, так и абсолютного количества моноцитов до уровня практически здоровых лиц, которое сохранялось в течение месячного периода наблюдения (табл. 1).

Фоновое исследование фагоцитарной активности моноцитов с частицами латекса у больных атопической формой бронхиальной астмы показало снижение относительного и абсолютного числа фагоцитирующих клеток по сравнению с данными контрольной группы (Р <0,05), в то время как фагоцитарное число у этих больных оказалось повышенным - 5,15 ± 0,32 против $3,98 \pm 0,19\%$ у здоровых лиц. Интегральный фагоцитарный индекс до подъема в горы также был сниженным, составляя $1,21 \pm 0,09$ против $1,64 \pm$ 0,11 (Р <0,05). В острый период адаптации на 3-5 день пребывания в горах у больных атопической формой бронхиальной астмы происходило подавление фагоцитарной активности моноцитов крови, которое выражалось в достоверном снижении фагоцитарного числа 3,94 +0,35 (Р <0,05), уменьшении относительного количества фагоцитирующих моноцитов и интегрального фагоцитарного индекса 0,40 +0,04 (Р <0,05). После месячного пребывания в высогорном стационаре на фоне клинического улучшения у больных отмечалось повышение фагоцитарного показателя до 27,29±1,48 % по сравнению с фоном 23,43±1,26%. Однако этот тест оставался сниженным относительно данных контрольной группы 44,92±2,45% (P<0,05). Аналогично изменялся и интегральный фагоцитарный индекс, после пребывания в высокогорье он повысился. но оставался сниженным относительно соответствующих данных здоровых лиц. Фагоцитарное число в процессе адаптации достигало исходного уровня и не отличалось существенно от данных в контрольной группе.

Известно, что исход фагоцитоза во многом зависит от состояния кислородзависимой системы бактерицидности, оцениваемой по НСТ-тесту [13, 16]. Сравнение результатов нитросинего тетразолиевого теста у больных атопической формой бронхиальной астмы при высокогорной климатотерапии показало при фоновом обследовании снижение относительного и абсолютного количества диформазан-положительных моноцитов - $28,5\pm1,34\%$ против $73,08\pm1,44\%$ в контроле. Оказался сниженным и средний цитохимический коэффициент относительно данных здоровых лиц. После проведенной высокогорной климатотерапии на 25-30 дни адаптации у больных атопической формой бронхиальной астмы отмечалось достоверное повышение относительного и абсолютного количества диформазан-положительных моноцитов и достоверное повышение среднего цитохимического коэффициента (Р <0,05) однако по сравнению с контрольной группой эти показатели оставались сниженными.

Активное участие в осуществлении иммунного фагоцитоза и межклеточной кооперации принимает рецепторный аппарат поверхностных мембран фагоцитов [13, 14]. Исследование экспрессии рецепторов для С-фрагмента иммуноглобулинов и C_3 -фракции комплемента показало у больных атопической формой бронхиальной астмы в фоновых исследованиях снижение относительного и абсолютного содержания моноцитов, образующих ЕА-и ЕАС-розетки, по сравнению с данными контрольной группы (P)

Таблица 2

Фагоцитарная активность нейтрофилов $(M \pm m)$ у больных атопической формой				
бронхиальной астмы при высокогорной климатотерапии				

	1			
		Перевал Туя-Ашу (3200 м над ур. м)		
Показатель	г. Бишкек,	3-5день	25-30 день	
	760 м,	26	24	
	фон	n =	n =	
		12	12	
Фагоцитарный показатель, %	35,61±1,53*	18,96±1,25×*	$37,54\pm2,03$ **	
	52,42±1,16	37,92±2,04	54,67±1,80	
В 1 л крови (109/л)	1,30±0,08*	0.69 ± 0.06^{x}	$1,50\pm0,11^{x*}$	
	$1,64\pm0,21$	1,18±0,08	2,10±0,20	
Фагоцитарное число	5,37±0,35-*	4,59±0,44-*	$6,29\pm0,62$	
	$3,33\pm0,09$	1,19±0,09	5,56±0,38	
Интегральный фагоцитарный	1,83±0,11	$0.82\pm0.07^{x*}$	2,17±0,16-*	
индекс	$1,75\pm0,08$	1,19±0,09	3,07±0,27	
НСТ-тест, %	40,28±1,01*	25,88±0,95	$63,75\pm1,45$ *	
	84,17±1,31	40,83±3,04	82,41±1,50	
В 1 л крови (109/л)	$1,48 \pm 0,09$ *	0.95 ± 0.07 **	$2,59 \pm 0,12^{x*}$	
	$2,63 \pm 032$	$1,28 \pm 0,13$	$3,16 \pm 0,28$	
Средний цитохимический	<u>0,46±0,01</u> *	0,29±0,01 ×*	0,82±0,03×*	
коэффициент	$1,15\pm0,04$	0,52±0,05	1,17±0,04	

Примечание. В в числителе – показатели у больных, в знаменателе – у здоровых лиц; x – результат достоверно отличается от исходных данных; * – от данных практически здоровых лиц (P < 0.05).

< 0,05) (табл. 2). После 30-дневной адаптации у больных атонической формой бронхиальной астмы отмечалось достоверное повышение (Р < 0,05) как относительного, так и абсолютного числа ЕА и ЕАС-розеткообразующих моноцитов относительно исходных данных, однако относительное количество ЕА и ЕАС-РОМ оставалось достоверно сниженным по сравнению с таковым у практически здоровых лиц, адаптирующихся к условиям высокогорья (см. рисунок).</p>

Суммарный индекс люминесценции лизосом (СИЛ) у больных атопической формой бронхиальной астмы был ниже, чем у здоровых лиц при фоновом обследовании (Р <0,05). После проведенного высокогорного лечения у больных атопической формой бронхиальной астмы отмечалось повышение СИЛ лизосом моноцитов по сравнению с исходными данными, но он достоверно оставался сниженным относительно данных практически здоровых лиц (Р <0,05) (табл. 2). Эти изменения, по-видимому, связаны с тем, что на фоне подъема в горы стресс-реакция и связанный с этим выброс гормонов коры надпочечников вызывает, с одной стороны, подавление функциональной активности мононуклеарных фагоцитов, с другой - вызывает стабилизацию мембран лизосом, препятствует процессу дегрануляции [3, 4].

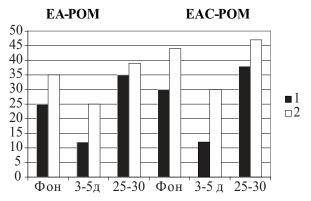


Рис. 1. ЕА-и ЕАС-розеткообразование моноцитов у больных атопической формы бронхиальной астмы при высокогорной климатотерапии: 1 — больные атопической формой бронхиальной астмы; 2 — контрольная группа.

При рассмотрении фагоцитарной активности нейтрофилов и НСТ-теста нейтрофилов у больных атопической формой бронхиальной астмы отмечался сниженный фагоцитарный показатель по сравнению с данными здоровых лиц,

фагоцитарное число было повышено, а интегральный фагоцитарный индекс нейтрофилов не отличался от показателей контрольной группы (P<0,05) (табл. 2). На 3–5 день адаптации отмечалось снижение как относительного так и абсолютного количества фагоцитирующих нейтрофилов. Снижался и интегральный фагоцитарный индекс, а фагоцитарное число оставалось без изменений.

После проведенной климатотерапии на перевале Туя-Ашу (3200 м) на фоне клинического улучшения происходило повышение интегрального индекса, а фагоцитарный показатель и фагоцитарное число возвращались к исходным уровням (табл. 2).

Количество диформазан-положительных нейтрофилов также претерпело фазовые сдвиги, оставаясь при фоновом исследовании пониженным по сравнению с данными у практически здоровых лиц. В период адаптации этот показатель снижался еще в большей степени, а после проведенного лечения на 25-30 дни пребывания в высокогорном стационаре отмечалось повышение диформазанположительных нейтрофилов и среднего цитохимического коэффициента. Так, если до лечения диформазан-положительных нейтрофилов было 40,28±1,01%, то после лечения стало 63,75±1,45%, (Р <0,05) средний цитохимический коэффициент был 0,46±0,01%, а после адаптации стал $0.82\pm0.03\%$ (P < 0.05), но по сравнению с данными практически здоровых лиц (1,17±0,04%) он оставался сниженным.

Выводы. После проведенного месячного горноклиматического лечения в высокогорном стационаре Туя-Ашу (3200 м над ур. м) у всех больных атопической формой бронхиальной астмы был получен положительный клинический эффект. Клиническое улучшение характеризовалось урежением и даже прекращением у отдельных больных приступов удушья, существенным улучшением функции внешнего дыхания.

Таким образом, лечение пациентов с атопической формой бронхиальной астмы высокогорным климатом приводит к нормализации ряда показателей системы мононуклеарных фагоцитов и нейтрофилов, что свидетельствует об эффективности высокогорной климатотерапии.

Литература

1. *Бримкулов Н.Н., Бакирова А.Н., Чалтабаев К.С.* Влияние высокогорной климатотерапии на функцию коры надпочечников у больных бронхиальной астмой // Клин. мед. — 1990. № 6. — С. 82—85.

- 2. Гончаров А.Г. Мононуклеарные фагоциты периферической крови у здоровых людей при адаптации к высокогорью и деадаптации: Автореф. дис.... канд. мед. наук. Алма-Ата, 1988. 25 с.
- 3. Дворчик Е. Е., Зурочка А.В., Шестакова Л.В., Рябова Л.В. Оценка хемотаксической функции нейтрофилов больных бронхиальной астмой // Матер. 4 конф. иммунологов Урала. Уфа, 2005. С. 171.
- Китаев М.И. Гончаров А.Г. Мононуклеарные фагоциты при адаптации практически здоровых лиц к условиям высокогорья // Косм. биол. – 1987. № 4. – С. 80–83.
- Китаев М.И., Тохтобаев А.Г., Гончаров А.Г. Иммунитет у жителей разных горных высот // Изв. АН Кирг. ССР. Химико-технологич. и биологич. науки. – 1990. № 4. – С. 72–79
- 6. Миррахимов М.М., Китаев М.И., Саманчина Б.Т., Бримкулов Н.Н. Т- и В-звенья иммунитета у больных инфекционно-зависимой формой бронхиальной астмы при кратковременной адаптации к условиям высокогорья // Вопр. курортол. 1986. № 3. С. 14–17.
- 7. *Рябова Л.В.* Состояние иммунологического статуса больных бронхиальной астмой в острый период // Медицинская иммунология. 2005. Т.7, № 2–3. С. 135–136.
- Рябова Л.В. Клинико-иммунологические особенности течения бронхиальной астмы // Вестник новых медицинских технологий. 2009. № 1. С. 177–180.
- 9. Соколов В.В., Рендель Э.И. Морфофункциональное исследование моноцитов как метод оценки состояния системы мононуклеарных фагоцитов: Метод. рекоменд. – М., 1983. – 13 с.
- 10. *Фрейдлин И.С.* Система мононуклеарных фагоцитов. М.: Медицина, 1986. 252 с.
- 11. *Фрейдлин И.С.* Некоторые аспекты регуляторной функции макрофагов // Иммунология. 1993. №2 С. 11 16.
- 12. Якушенко М.Н., Шогенцукова Е.А. Горноклиматическое лечение больных бронхиальной астмой // Мед. аспекты охраны окружающей среды: Тез. докл. конф. Тарту, 1986. С. 161–165.
- 13. *Griffin P.M.* Activation of macrophage complement receptor for phagocytosis // Macrophage Active. New York; London, 1984. P. 57–70.
- 14. *Hart P.D.* Macrophage antimicrobial activity: evidence for participation by lysosomes in the killing of saechromyces cerevisiae by normal resident macrophages // Infec. and Immunol. 1982. V. 31, № 2. P. 828–830.

200-203.

16. Lane S.J., Soh C., Hallsworth M.P et al.

Monocytes and macrophages in Asthma // Int.

Arch. Allergy Immunol. – 1992. – Vol.99. – P.

P 532-534

neutrophils; a diagnostic aid. – 1998. – Vol. 11. –

Infection and nitroblue tetrazolium reduction by

17. Park B.H., Fikring S.M. Smithwick E.M.