ДВОЙНЫЕ ЛИНИИ ВЫРОЖДЕННОГО ЧАСТИЧНОГО ОТОБРАЖЕНИЯ ЕВКЛИДОВА ПРОСТРАНСТВА, ПОРОЖДАЕМОГО ЗАДАННОЙ ЦИКЛИЧЕСКОЙ СЕТЬЮ ФРЕНЕ

Г. Матиева, А.Б. Ташпулатов

Найдено необходимое и достаточное условие для того, чтобы ортогональная проекция любой линии $\ell \subset E_4$ в E_3 была двойной линией вырожденного частичного отображения, порождаемого заданной циклической, голономной сетью Френе.

Ключевые слова: двойная линия; вырожденное частичное отображение; циклическая сеть Френе.

В области Ω евклидова пространства E_4 задана циклическая сеть Френе \tilde{E}_4 . Подвижной ортонормированный репер $\mathfrak{R}_1 = (X, \vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4)$ в области Ω выбран так, чтобы он был репером Френе [1] для линии ω^1 заданной сети \tilde{E}_4 . Деривационные формулы репера \mathfrak{R}_1 имеют вид:

$$d\vec{X} = \omega^i \vec{e}_i , \ d\vec{e}_i = \omega_i^k \vec{e}_k . \tag{1}$$

Формы ω^i, ω^k_i удовлетворяют структурным уравнениям евклидова пространства:

$$D\omega^{i} = \omega^{k} \wedge \omega_{k}^{i}, D\omega_{i}^{k} = \omega_{i}^{j} \wedge \omega_{i}^{k}, \omega_{i}^{j} + \omega_{i}^{i} = 0.$$
(2)

Поскольку репер \mathfrak{R}_1 построен на касательных к линиям сети $\tilde{\mathbb{E}}_4$, формы ω_i^k становятся главными [2], т.е.

$$\omega_i^k = \Lambda_{ii}^k \omega^i \,. \tag{3}$$

В силу последнего равенства формулы (2) имеем:

$$\Lambda_{ii}^k = -\Lambda_{ki}^i$$
.

Дифференцируя внешним образом систему уравнений (3) и применяя лемму Картана, получим:

$$d\Lambda_{ik}^{j} = \left(\Lambda_{ikm}^{j} + \Lambda_{i\ell}^{j}\Lambda_{km}^{\ell} + \Lambda_{\ell k}^{j}\Lambda_{im}^{\ell}\right)\omega^{m}.$$
(4)

Система величин $\left\{ \Lambda_{ik}^{j}, \Lambda_{ikm}^{j} \right\}$ определяет геометрический объект второго порядка.

Псевдофокус [3] F_i^j ($i \neq j$) касательной к линиям ω^i циклической сети Σ_4 Френе определяется следующим радиус-вектором:

$$\vec{F}_i^j = \vec{X} - \left(1/\Lambda_{ij}^j\right)\vec{e}_i = \vec{X} + \left(1/\Lambda_{jj}^i\right)\vec{e}_i. \tag{5}$$

Так как заданная сеть $\tilde{\Sigma}_4$ является циклической сетью Френе (т.е. реперы $\mathfrak{R}_1 = \left(X, \vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\right)$ $\mathfrak{R}_2 = \left(X, \vec{e}_2, \vec{e}_3, \vec{e}_4, \vec{e}_1\right), \ \mathfrak{R}_3 = \left(X, \vec{e}_3, \vec{e}_4, \vec{e}_1, \vec{e}_2\right), \ \mathfrak{R}_4 = \left(X, \vec{e}_4, \vec{e}_1, \vec{e}_2, \vec{e}_3\right)$ являются реперами Френе для линий ω^1 , ω^2 , ω^3 , ω^4 соответственно) [4], на каждой касательной к линиям сети Френе Σ_4 существует только по одному псевдофокусу $F_1^4 \in \left(X, \vec{e}_1\right), \ F_2^1 \in \left(X, \vec{e}_2\right), \ F_3^2 \in \left(X, \vec{e}_3\right), \ F_4^3 \in \left(X, \vec{e}_4\right),$ а остальные являются бесконечно удаленными точками расширенного евклидова пространства \overline{E}_4 .

Когда точка X смещается в области Ω , точка F_1^4 описывает свою область $\Omega_1^4 \in E_4$. Получим частичное отображение $f: \Omega \to \Omega_1^4$ такое, что $f(X) = F_1^4$.

Продифференцируя обычным образом равенство (4) получим:

$$d\vec{F}_{1}^{4} = \omega^{i}\vec{e}_{i} + \frac{B_{14m}^{4}\omega^{m}}{\left(\Lambda_{14}^{4}\right)^{2}}\vec{e}_{1} - \frac{\Lambda_{1m}^{k}\omega^{m}}{\Lambda_{14}^{4}}\vec{e}_{k} = \left[\vec{e}_{1} + \frac{B_{141}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}}\vec{e}_{1} - \frac{\Lambda_{11}^{k}}{\Lambda_{14}^{4}}\vec{e}_{k}\right]\omega^{1} + \left[\vec{e}_{2} + \frac{B_{142}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}}\vec{e}_{1} - \frac{\Lambda_{12}^{k}}{\Lambda_{14}^{4}}\vec{e}_{k}\right]\omega^{2} + \left[\vec{e}_{3} + \frac{B_{143}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}}\vec{e}_{1} - \frac{\Lambda_{13}^{k}}{\Lambda_{14}^{4}}\vec{e}_{k}\right]\omega^{3} + \left[\vec{e}_{4} + \frac{B_{144}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}}\vec{e}_{1} - \frac{\Lambda_{14}^{k}}{\Lambda_{14}^{4}}\vec{e}_{k}\right]\omega^{4}$$

$$(6)$$

Введем обозначения

$$\vec{b}_{1} = \left[1 + \frac{B_{141}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \right] \vec{e}_{1} - \frac{\Lambda_{11}^{2}}{\Lambda_{14}^{4}} \vec{e}_{2} , \quad \vec{b}_{2} = \frac{B_{142}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \vec{e}_{1} + \vec{e}_{2} - \frac{\Lambda_{12}^{4}}{\Lambda_{14}^{4}} \vec{e}_{4} ,
\vec{b}_{3} = \frac{B_{143}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \vec{e}_{1} - \frac{\Lambda_{13}^{2}}{\Lambda_{14}^{4}} \vec{e}_{2} + \vec{e}_{3} - \frac{\Lambda_{13}^{4}}{\Lambda_{14}^{4}} \vec{e}_{4} , \quad \vec{b}_{4} = \frac{B_{144}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \vec{e}_{1} - \frac{\Lambda_{14}^{2}}{\Lambda_{14}^{4}} \vec{e}_{2} , \tag{7}$$

где $B_{14m}^4 = \Lambda_{14m}^j + \Lambda_{1\ell}^j \Lambda_{4m}^\ell + \Lambda_{\ell 4}^j \Lambda_{1m}^\ell$.

Рассмотрим случай, когда циклическая сеть Френе Σ_4 голономная, т.е. $\Lambda^k_{ij}=0$ (i,j,k- различны). Тогда векторы \vec{b}_i имеют вид:

$$\vec{b}_{1} = \left[1 + \frac{B_{141}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}}\right] \vec{e}_{1} - \frac{\Lambda_{11}^{2}}{\Lambda_{14}^{4}} \vec{e}_{2} , \ \vec{b}_{2} = \frac{B_{142}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \vec{e}_{1} + \vec{e}_{2} ,$$

$$\vec{b}_{3} = \frac{B_{143}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \vec{e}_{1} + \vec{e}_{3} , \ \vec{b}_{4} = \frac{B_{144}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \vec{e}_{1} .$$
(8)

Видно, что \vec{b}_4, \vec{e}_1 – коллинеарны, $\vec{b}_1, \vec{b}_2, \vec{b}_3$ – линейно независимы. Следовательно, область Ω_1^4 является трехмерным, значит, отображение $f: \Omega \to \Omega_1^4$ является вырожденным.

Линии ℓ , $\overline{\ell} = f(\ell)$ называются двойными линиями отображения f, если касательные к ним, взятые в соответствующих точках X и f(X) пересекаются, либо параллельны [5].

Рассмотрим векторы \vec{e}_1 , \vec{b}_1 , $\overline{XF_1^4} = -\left(1/\Lambda_{14}^4\right)\vec{e}_1$, где $f\left(\vec{e}_1\right) = \vec{b}_1$. Учитывая (6), получаем что $\left(\vec{e}_1, \vec{b}_1, \overline{XF_1^4}\right) = 0$, т.е. эти векторы компланарны, следовательно линия ω^1 циклической, голономной сети Френе $\tilde{\Sigma}_4$ является двойной линией вырожденного отображения $f: \Omega \to \Omega_1^4$.

Аналогичным образом можно убедиться в том, что линии ω^2 и ω^3 данной циклической, голономной сети Френе $\tilde{\Sigma}_4$ являются двойными линиями отображения f.

Рассмотрим линию $\ell \subset E_3 = \left(X, \vec{e}_1, \vec{e}_2, \vec{e}_3\right)$ и ее касательный вектор $\vec{\ell} = \ell^1 \vec{e}_1 + \ell^2 \vec{e}_2 + \ell^3 \vec{e}_3$. Пусть $\vec{\ell} = f\left(\ell\right)$ образ этой линии в рассматриваемом отображении. Тогда ее касательный вектор имеет вид: $f\left(\vec{\ell}\right) = \ell^1 \vec{b}_1 + \ell^2 \vec{b}_2 + \ell^3 \vec{b}_3$.

Учитывая (6), (7), (8), отсюда получим:

$$f(\vec{\ell}) = \left(\left[1 + \frac{B_{141}^4}{\left(\Lambda_{14}^4\right)^2} \right] \ell^1 + \frac{B_{142}^4}{\left(\Lambda_{14}^4\right)^2} \ell^2 + \frac{B_{143}^4}{\left(\Lambda_{14}^4\right)^2} \ell^3 \right) \vec{e}_1 + \left(-\frac{\Lambda_{11}^2}{\Lambda_{14}^4} \ell^1 + \ell^2 \right) \vec{e}_2 + \ell^3 \vec{e}_3.$$

Введем обозначения:

$$\overline{\ell}^{1} = \left[1 + \frac{B_{141}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}}\right] \ell^{1} + \frac{B_{142}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \ell^{2} + \frac{B_{143}^{4}}{\left(\Lambda_{14}^{4}\right)^{2}} \ell^{3},$$

$$\overline{\ell}^{2} = -\frac{\Lambda_{11}^{2}}{\Lambda_{14}^{4}} \ell^{1} + \ell^{2}, \ \overline{\ell}^{3} = \ell^{3}.$$
 (9)

Тогда имеем: $f(\vec{\ell}) = \overline{\ell}^1 \vec{e}_1 + \overline{\ell}^2 \vec{e}_2 + \overline{\ell}^3 \vec{e}_3$.

Найдем смешанное произведение трех векторов $\vec{\ell}$, $f(\vec{\ell})$, $\overrightarrow{XF_1^4}$:

$$(\vec{f}, f(\vec{\ell}), \overrightarrow{XF_1^4}) = (\ell^2 \ell^3 - \ell^3 \overline{\ell}^2) / \Lambda_{14}^4$$
.

Эти векторы компланарны тогда и только тогда, когда $\ell^2\ell^3-\ell^3\overline{\ell}^2=0$, т.е. когда а) $\ell^2=\overline{\ell}^2$ либо б) $\ell^3=0$. Отсюда, учитывая первое равенство формулы (9), имеем:

а)
$$\frac{\Lambda_{11}^2}{\Lambda_{14}^4}\ell'=0$$
 . Так как $\omega(R,z,M)=\iint\limits_{\hat{c}_{-}(M)}\frac{dpdq}{R(p,q)}$, отсюда получим $\ell^1=0$.

6)
$$\vec{f}(\vec{\ell}) = \ell^1 \vec{e}_1 + \ell^2 \vec{e}_2, \ \vec{\ell} = \ell^1 \vec{e}_1 + \ell^2 \vec{e}_2,$$

Обратно, если $\ell^1 = 0$ или $\ell^3 = 0$, то векторы $\vec{\ell}$, $f(\vec{\ell})$, $\overline{XF_1^4}$ – компланарны.

Таким образом, доказана следующая теорема.

Теорема. Линии $\ell \subset E_3$, $f(\ell) = \ell'$ являются двойными линиями вырожденного отображения $f: \Omega \to \Omega_1^4$ тогда и только тогда, когда $\ell^1 = 0$ либо $\ell^3 = 0$ (т.е. ее касательный вектор $\vec{\ell}$ лежит на плоскости $(X, \vec{e}_2, \vec{e}_3)$ либо на плоскости $(X, \vec{e}_1, \vec{e}_2)$).

Литература

- 1. Рашевский П.К. Риманова геометрия и тензорный анализ. М.: Наука, 1967. 664 с.
- 2. *Базылев В.Т.* Сети на многообразиях // Труды геометр. семинара. М.: АНСССР, ВИНИТИ, 1974. Т. 6. С. 189–205.
- Базылев В.Т. О многомерных сетях в евклидовом пространстве // Литовский матем. сборник. 1966. – Вып. VI. – №4. – С. 475–491.

4. *Матиева Г*. Геометрия частичных отображений, сетей и распределений евклидова пространства. – Ош: ОшГУ; Изд. центр "Билим", 2003. – 151 с.