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OPTIMUM CONTROL IN THE PROBLEM OF MINIMIZATION OF HARMFUL IMPURITIES
IN THE ATMOSPHERE BY PONTRYAGIN’S MAXIMUM PRINCIPLE
AND SPHERICAL HARMONICS METHOD

Ramiz Rafatov

Protection of the environment from the industrial pollution is one of the most actual problems of modern sci-
ence and engineering. This paper is devoted to the investigation of the problem, related to the disposition of
industrial objects, which provides the minimal pollution of nearby economically important objects. It is sup-
posed that all of the industrial objects in the given region throw out respective quantities of the harmful impu-
rity in the atmosphere.

Key words: The problem of minimization; Integral-differential equation; Optimality Conditions; Principle of the
maximum; Harmonics method equations.

1. Statement of the problem
Consider the area G of n—dimensional space R" with a border I', which has a form of cylinder with
bases I',,I",, and lateral surface I',. We assume that » industrial objects are located in the points
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x' =(x,x;,..,x,),i=1,2, ...,r of G, and throw out p,(¢), (i=1,2,...,r) harmful impurities in the atmos-
phere. As a result, we come to the following problem setting [1].
It is given the integral-differential equation of the pollution matter diffusion of the » industrial objects,
n-1 22 2
aa—+¢grady/+0'1//(txu) 77222 6{//_

(M

= Z p,(8(x— xS -0 8,0 (t,x,0)dCY.

Here, y(¢,x,0) is a concentration of the impurity particles located in the point x =(x,,x,,...,x,) at the

oy oy v,

moment ¢ and having a velocity V=(v,v,,...,v,), grady =(— .
ox,ox,” ox,

is a vector-gradient,

- . . s o o e OV,
Vv=(v,V,,...,v,) €Q— is a velocity vector, satisfying to the continuity condition div(0)= Z—’= 0, and
i=1 x,'

v, =0at x, =0 and x, =H ,thatison I'; and I',, (I', and I',, are the bases of the n — dimensional cyl-

inder G), Q is a sphere of unit radius in R, described by the equation va =1, o, 4 are the positive con-
i=1

stants describing the medium G < R" where harmful impurities diffuse, 7, £ are the coefficients of a “hori-
zontal” and “vertical” turbulent exchange. x =(x,,x,,...,x,) is a spatial point of the area G, @(t, X, Vv, 17') is
the function describing dispersion of the harmful impurity particles, §(x—x,),5(v—V,) are the Dirac’s o-

functions, m(Q) is the area of the surface of a unit sphere Q in R" [2]:
m(Q) = —2(*/_) L&) =[e'tdr.
)’ /
The non-stationary integro-differential equation (1) must be supplemented with the boundary
conditions

_ - 0
W (6,%,0)|,0=, (x,0), %—aw) ra=0, )

a"’| =0 at (B,i)<0, 3)

g F,,><§2= Oa l//(t’x’D)

where 7 is a normal unit vector to the external side of surface I of the cylinder G.

Factor o in the condition (2), in the case of three-dimensional space R’, characterizes a probability of
the substances, laid-down to the ground surface, to get back into the atmosphere. Condition (3), in the case
of n =3, means that the particles which leave the domain G, do not return back into the this area.

The problem is to find such functions p,(¢),(i =1,2,...,r), on which the functional

. T
Jp)= Y B[ p (Ot + [dG [[w(Tx,0) -y, (x.0)] dO @)
=l 0 G Q
reach the least possible value. Here y(¢,x,0) is the solution of the problem (1)—(3), T > 0 is defined,
w,(x,0) is the known function from W,°[GxQ], B, = const >0, (i =1,2,...,r) -
Admissible controls are the various functions p=(p,, p,,.... p,) from L[0,T]. The control

p= (Pn Paseos P,) , which gives the solution of the considered problem, will be called the optimal and de-
noted by p° = (plo, pS, e P?) .
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2. Optimality Conditions
To determine the optimality conditions, we give some admissible increment Ap=(Ap,,Ap,,...,Ap.)

of the control p and denote by Ay the corresponding increment of the function l//(t,x,v) . It is obvious that

the function Al//(t,x,v) is the solution of the boundary-value problem [2]

2
aA—l//+vgraafAl// +oAy (t,x,0) -V Ay — & 0 Al//
ot
®)
= ZAP, ®)o(x—x)0(b-0,) + Q) I@(l,x,z}',z}")A w(t,x,0)dC
i=1 Q
oAy - oA
Vo™ =0, [a_xn_aAV/j Q™ 0, Al//‘ro'xg:o at (0,1)<0, K‘:j erQZO (6)
By the direct calculations we find that the functional J [ p] (see (1.4)) has the increment
, T T R
=Zﬂ,{ [2p.(OAp, )t +[[Ap, ()] dr}
= Lo ’ )

+2[dG [[y(T,x,0) - y,(x.0)] Ap (T, x,0)dQ2+ [dG[[ A w(T.x.0)] d2
G Q G Q
Let's consider the arbitrary function ®(¢,x,v)eW,"’. Then, obviously that the next equality takes a
place

IdtjdGJd)(t x U){—+vgradl//+ov// 772 Oy _ 8 ov_

82

n

_Z p.()0(x—x)o©® - ") —mi(@(t,x,ﬁ,ﬁ’)w(t,x, 5')dQ'}dQ =0.

Denoting the left hand side of this equality by A[CD p] we obtain
2
A[®, p]= jdrjdecD(z X U){—Jrvgradl/ﬂrm// 772 a‘/z’ —5 2
, . K ®)
—Zp[(t)é(x -x)s@®-0") ——j@(r,x,D,D')y/(Z,x,D')dQ’}dQ =0.
= m(€) ¢,

Integrating by parts, we transform the equality (2.4) to the form of

[dG[Ay/(T,x,0)D(T, x,5)dQ + jdt [dG[ Ay (t,x,0)x
g Q 0 G Q

oD Hod o0 d
———Vgrad® + o® - - O, x,0,0")D(t,x,0)dQ +dQ—
x{ o vgra 77; 6x.2 & 8xj (Q)J (t,x,0,0")D(¢t,x,0") }

)

_,Z]JAP’(I)CDU X, 0, )dt+J.dtJ.er.{U<Al//® 77[® 621// zi)ﬂd9+

+J‘dtj‘d9{j§( o2V ] jé( 0BV 5 Z;Dﬂdl" 0.

'y n

Here v, isa pl‘Q]CCthl’l of the vector v to the unlt vector 7 .
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Up to now ®(7,x,V) was the arbitrary function from W, ([0,T]><G><Q). Let's define it now as a

generalized solution of the boundary-value problem

n—1
8;‘)+vgmd(l) od(t,x z))+772a ® 6 ?+ 4 j@(t,x,ﬁ',ﬁ)q)(t,x,ﬁ')dQ’=O (10)
ot 5 . Q)7
(aﬁ_a@]rm:m aﬂ‘r =0, O =0 ar (0,1)20
6x 0 X H 0
(T, x,0) = =2[y(T,x,0) —y,(x,0)]. 11

Taking into account (5), (6), (10), and (11), the equality (9) can be simplified. Namely, the second term
at the left side in (9) vanishes due to (10). Because of the third equality from conditions (6) and the second

of the conditions (11), and since cos(#,x,)=cos(i,x,)=...=cos(ii,x, ,)=0 and V,=0 on I,
and T,

T

[at]dr[o,apwan=0.

0 Tr Q

By virtue of the second condition in (6) and first of the conditions in (11), we have

jdzjdrj( oAV _ 2;1) Q=0.

In view of the last condltlon from (6) and a penultimate condition from (11), the equation (9) takes the
form of

2jdeA¢/(T x,0)[ w(T,x,0) - y,(x',0") dQ+ZjAp OO, x', 07 )dt =
J=lo
From thls, by virtue of the last condition from (11), it follows that the increment AJ [ p] of the mini-
mized functional from (7) is transformed to the form of

, T

ATp1= Y. [Ap,(0)] 2B,p,(t) = D(t,x',0') e +

S (12)
+3 B [[8p O di + [dG[[Ap(T.x.0] d2
i=1

Now, a;plying a techfliqu;2 of the work [3], the following theorem can be proved.

Theorem (principle of the maximum). Necessary and enough condition of optimality of the admissible
control p’ = ( Do DY ) and corresponding to it solution of the boundary-value problem (1)—(3) is a satisfy-
ing by the functions

Hi(@(t, x',0°),y,p)=pi ©(t.x" v’ - Bipc, i=1,...r (13)
of the conditions

H(®",y".pi")=maxH(®",y"P), i=1,.... 1, (14)
where @) =®° (t, x, v’), (i=1,2,..,r) is the solution to the boundary-value problem (10)—(11) subject to
V=y,.

3. Construction of optimal control
For the optimal control construction, first we assume, that no restrictions are imposed on the domain of

admissible control parameters. Then it follows from (13), (14) that optimal control p° =( D)y p)o) must

satisfy the conditions
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1 Py
pl.(t)=2—ﬂ[CD(t x,oY, i=1..r (15)

Thus, the problem of construction of optimal control is reduced to the determining of p° = ( Dy s pf) ,
w'and ®° from the equations (1)—(3), (5), (6) and (10), (11).

For the simplicity of reasoning henceforward, we assume that » = 3 and then x, =x,x, =y, x, =z, and
the unit velocity vector in this case is Vv =(v,,v,,v;), where v, =sinfcos@, v, =sinfsing, v, =cosf . We
will investigate the boundary-value problem (10)—(11), where, in accordance with [3, 4], we assume

O, %, 9,2,5,0) = 2(1y),  Hy =&ol +1-¢7\1=¢" cos(p—¢") (16)

Then the equations (10) and (1) take the form of

op 00 oD, LD

62+sm9cos¢)a£+s1nz9s1n(pa£+cos<9——77( —+t—)+&—

ot ox oy oz Ox Oy oz

T a7
+= [ do'[ g0t %, 3,2, "¢)dS =0

4r e
oy . oy . . Oy oy
——+sin@cos p——+ sin @sin p—— + cos @ —— + tL,x,v,2,0,0)—

ot ¢ax (Day oz O-W( X029 )

a l// a l// 821// B ﬂ, 2z ,I , , ,
(52 ayz) e —E_([d¢£g(#o)w(t,x,y,z,§,¢)d§ + (18)

+%i’%¢)(l"xi’yi’zi’(p’9)5(x_xi’y_yiyz_zi)§(¢)—¢i,9—9i)
i=1 /M

We apply the spherical harmonics method to equation (17). For that, we consider the system of spheri-
cal functions [4]:

=P’(cosh), C;' =P"(cosO)cosmp, S;'=P"(cosf)sinmep (19)
k=0,1,2...,m=0,1,2, ...,k
Here
P'() = P.(1) = —— d (=D, k=0.12... (20)

k 2kk!dﬂk b b ]
are Legendre polynomials [5, 6, 7, 8, 9],
m m 2 % k+m

P (u)=(1-12)" ddlzgft):(l 251«!) da;lm [ -D"], k=01.2,.; m=0,12,..k 1)

are the attached Legendre polynomials [4, 5, 7-9]. It is known, that functions (20) and (21) satisfy the
orthogonally conditions of on the interval [-1, 1],

[ oms o 2 (k+m) L 1=k

[B B ndu= = ol where c&—{o’j#k (22)
Function g(y,) can be presented as (see (16))

Q) =3 S kDGR () where g, = [ B (u)g(k)d b 3)
Here 7

R(uy) = BB+ 22 - ” RGP )eos(p— ) (24)

Solution of the equation (17) w111 be found in the form of
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ok
Lis g 2kl k=m! o DMCER, (k=m)! g g 25)
27[ im0 1+, (k+m)! = m= m)!
where C;',S;" are determined by formulas (19)—(21), and A", B, are unknown functions of arguments
LXx Yy z
The system of spherical functions (19) forms the orthogonal functions on the unit sphere and complete
function set in the Hilbert space. Therefore any continuous function (I)(t,x, V,Z,0, 49) can be decomposed on

the spherical functions to any accuracy. In the decomposition (25), coefficients are defined by means of the
integrals

J.d(pJPO YPd A,f”zzfdgoj[Pkm(y)cosm(aDdy,
0 -1

(26)
B = IdgojP s1n modd u
-1
For convenience, we present function (25) as
{Z(zk +)PY(O) 4] +2Z(2k + 1)2 (k ’") P'” ()4 cosme + B]' sin mq))}
m= 1
Usmg this function and equahtles (22) (24), 1ntegra1 term in the equation (17) can be transformed to
J—— j dg' j g(u)0(t,%,,2,¢,¢Nd¢" = ﬁ{Z(2l+l)g,P°(,u)A°
i=0 (27)
+2Z(21 +1)g Z( J) P’ (u)(A’ cos jo+ B/ smj(p)}
Now the equatlon (17) can be presented as
2 2 2
1= cos¢—+\/1 0w s1n(p—+,u9——o(1) 77(a ? + 0 ?)+§6 (z) +
oz Ox oy oz 28)

+8—{Z(21+1)g,P°(,u)/L +2Z(2l+1)glz(1 J ;'P’(y)(A’ cos jo + B/ sin m)}
Equation (28) can be reduced to the system of differential equations with respect to
A" B, (k=0,1,2,..., m=0,1,....k). For that, we multiply the equation (28) in turn by
B’ (u),(k=0,1,2,...),C; =B" (u)cosmg, and S =P"(u)sinmp (k=0,1,2,...,m=0,1,...,k), and in-

tegrate with respect to angular variables ¢ and g in the limits from 0 up to 2z and from —1 up to 1, respec-
tively. The following recurrence relation from [4, 5] are used:

(2k-+1) B ()= (k =m+1) B () + (k o+ m) B, (1),
V=B () = [ B ()= B (1),

Ny p— (k+m)(k+m=1) B ()= (k=m+1)(k=m+2) B (1) ]

2k +1

(29

0<m<k-1
So, we multiply (28) by P, (u)=F’(x) and integrate a result with respect to variables ¢ and x. Then,
by virtue of the first of the formulas (26) we get

wai%]ﬂ )dy_—jd(quw" du_aé—/f (30
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Thus, we have found a transformation of the first term in the equation (28).
The second term of this equation will be equal to

o ; oD 1 0 1
[dp] 1= cosp—P! (u)dp=———( 4,1+ 4,.)
0 -1

2k +10x

Here, we used the first two formulae in (26) and the second identity from (29):

quof\/l WP (u cosw—du——fd(ﬂf [ B ()= Bl (1) |cos pd e =

2k +1
2k+1 ax|:‘[ (0‘[ kﬂ Cosgﬂ)dlu J.ngJ.P] COS(Dq)dlu:| 2k1+1§(14;+1 +A11—1)
The third term is treated by the similar Way,
j dp j N AP snw—dﬂ =———[do j [P (1) =P (1) ]sin g =
2k1+1 ay{j J' 2L (44)sin gpdd g1 — jdij smgo@d,u}

As a result we have

Id<ﬂfx/1 1P (1 sm(/)—dﬂ— L_%(5,-5.)

2k +10y

Now, we consider the fourth term of that equation. We use the first identity from (28) for m=0:

2z

J a0 j} [+ 1) 2 () + K2, (40 =

2z 1 aq)
do| uP’ (u)—du=
! ¢Jﬂk(ﬂ)6z Y

1 o
2k+18

2 1
{k+1 J.dgojfbkﬂ dy+kjd¢jq>zokﬁl(ﬂ)dy} 2k1 lj{(k+1)Af+l+kAfl}
0 -1

€2))

(32)

The fifth, sixth, seventh and eighth terms contain constant coefficients, therefore they are transformed to

the following expression,
o0

2 0
_0A0+77(8_+ JA°+§ 4
X

Gl
Now we consider the next term,
A 2 1 © .
gldgo_jlﬂ‘)(y);(zzﬂ)gi}g‘)( p)A° d,u—8—27[2 (2i+1)g,A jPO
2 A

AGE s 0 ; 0
=—> (2i+1)g A’ ——05, =—(2k+1)g, A4
4;( 1+ )gz i 2k+1 k 4( + )gk k

A

2 A0
+1—2gkAk (k=0,1,2,...

Combining the formulae (29)—(33) and A gk , we obtain the system with respect to AO A1

0
%+2k1+1{a%(/1’1“_411) ;(Bf]m B}«—l)+a—i((’f +1)A1?+1+k‘4/?1)}+

2 2 2
+(/1 jA°+77 6_+ 0 A+ éa—QA,?:O, k=0,1,2,..
2 o’ oy’ oz

(33)

(34)
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Let's multiply now equation (28) by C;" = F"(u)cosme for (k =0,1,2,....,m=0,1,..., k) and integrate
the result with respect to ¢ and ¢ from 0 to 27 and from —1 to 1, respectively. As a result, the first term takes a

form of %A,:" . To find expression for the second term, we use the second and third of identities (28).
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