УДК 539.31: 622.354.8

МОДЕЛИРОВАНИЕ УПРУГОЙ И НЕУПРУГОЙ ДЕФОРМАЦИИ МРАМОРА

Б.А. Рычков, Ю.Ю. Степанова

На основе экспериментальных данных А.Н. Ставрогина по трехосному сжатию образцов мрамора по схеме Т. Кармана определены упругие константы материала и параметры деформационного упрочнения.

Ключевые слова: упругость; пластичность; разрыхление; деформационное упрочнение.

SIMULATION ELASTIC AND INELASTIC DEFORMATION MARBLE

B.A. Rychkov, Yu.Yu. Stepanova

On the basis of experimental data of A.N. Stavrogin on triaxial marble sample by scheme Karman determined the elastic constants of the material and parameters of strain hardening.

Keywords: elasticity; plasticity; loosening; strain hardening.

Исходные данные. Цилиндрические образцы испытывали при неравномерном трехосном сжатии. Программа нагружения следующая.

Первоначально к образцу прикладывали гидростатическое давление, соответствующее равенству главных напряжений: $\sigma_1 = \sigma_2 = \sigma_3$. После достижения гидростатическим давлением определенного значения задавали только приращение осевого напряжения σ_1 , при этом боковое давление выдерживали постоянным, т. е. $\sigma_2 = \sigma_3$.

Экспериментальные данные представлены в виде приращений осевого напряжения $\Delta \sigma_1$, приращений осевой $\Delta \varepsilon_1$ и поперечной $\Delta \varepsilon_2$ деформаций при определенных уровнях бокового давления ($\sigma_2 = \sigma_3 = const$). Полученные в опыте значения деформаций при гидростатическом давлении, а также механические характеристики испытываемых образцов не указаны. Показано поведение образца до предела прочности (восходящая ветвь деформации) и затем до предела остаточной прочности (нисходящая ветвь деформации).

В данной работе рассмотрены только восходящие ветви деформации при различных боковых давлениях.

Нахождение упругих констант мрамора. Чтобы определить упругие константы материала (модуль Юнга E и коэффициент Пуассона v) вначале следует оценить расположение упругих участков (на диаграмме деформации) для каждого бокового давления друг относительно друга. С повышением бокового давления упругая линия должна быть выше предыдущей. Этому свойству не удовлетворяют данные при давлении $\sigma_2 = 250 M\Pi a$: в этом случае при фиксированном значении приращения напряжения $\Delta \sigma_1$ приращение деформации $\Delta \varepsilon_1$ больше, чем при давлении $\sigma_2 = 100 M\Pi a$. Поэтому эти данные исключены из рассмотрения. Не рассматриваются также данные при осевом сжатии ($\sigma_2 = 0 M\Pi a$), так как в этом случае до условного предела упругости в эксперименте зафиксировано только одно значение $\Delta \varepsilon_1$.

Далее для ряда значений напряжений в упругой области для боковых давлений $\sigma_2 = 10, 25, 50, 100, 150 MП a$ были найдены значения параметра *C*, по которому определяли вид напряженного состояния:

$$C = \frac{\sigma_2}{\sigma_1^* + \Delta \sigma_1},\tag{1}$$

где $\sigma_1^* = \sigma_2$, что достигается при гидростатическом давлении.

Закон Гука в предположении изотропности материала имеет вид:

$$e_1 = \frac{1}{E} \left(\sigma_1 - \nu (\sigma_2 + \sigma_3) \right). \tag{2}$$

С учетом обозначения (1) формулу (2) представим как

$$e_1 = \frac{\sigma_1}{E} (1 - 2C\nu). \tag{3}$$

При каком-либо постоянном значении параметра *С* формула (3) справедлива и для связи между

Вестник КРСУ. 2017. Том 17. № 5

приращением напряжения ($\Delta \sigma_1$) и деформации (e_1), т. е. имеем:

$$\Delta e_1 = \frac{\Delta \sigma_1}{E} (1 - 2C\nu), \text{ при } C = const \quad . \tag{4}$$

На основании формулы (4) метод определения упругих констант материала заключается в построении диаграммы деформации при фиксированных видах напряженного состояния C = const, выделяемых при всех используемых боковых давлениях в эксперименте. Достаточно рассмотреть такие диаграммы при двух значениях C. Тогда на основании (4) имеем систему двух уравнений относительно E и v. В результате получим следующие значения упругих констант:

$$E = 19168 \ M\Pi a, \ v = 0,2562 \ . \tag{5}$$

Оказалось, что упругая замеренная деформация достаточно близка к теоретическим данным, а имеющаяся погрешность допустима для горных пород. При этом надо иметь в виду, что измерение поперечной деформации производилось [1] только в одном сечении, а это, по мнение авторов эксперимента, укладывается в отклонение до 50 %. Таким образом, сделанное допущение о начальной изотропии данной горной породы оправдывается.

Нахождение предела упругости. Определение предела упругости (σ_c) при наличии начальной нелинейной диаграммы упругой деформации (e_1) осуществляли следующим образом.

Рассматривали наклон касательной к кривой упругости, по сравнению с его начальным значением (то есть в начале координат). Точка касания данной касательной к кривой линии замеряемой деформации (ε_1) определяет условный предел упругости. При этом допускается изменение тангенса угла наклона касательной до 50 % [2]. В нашем случае точка касания подобной прямой наблюдалась при изменении тангенса угла на 25 %. Но при дальнейших расчетах из-за получаемой малости предела упругости были большие погрешности при выделении пластической поперечной деформации (Γ_2), при нахождении продольной пластической составляющей деформации (Γ_1) изменение предела упругости не вносило больших изменений.

Для боковых давлений 150 и 250 *МПа* предел упругости находили альтернативным методом "Взгляд назад". Этот метод, по предложению В.Д. Клюшникова [3], заключается в условии сопряжения (пересечения) упругой линии деформации и линии, с помощью которой аппроксимируется диаграмма упругопластической деформации, начиная от предела прочности до уменьшающихся значений напряжения. Таким способом предел упругости можно найти, исключая неясность упругой области диаграммы, полученной в эксперименте.

В итоге при давлении $\sigma_2 = 100$ МПа, $\sigma_{1y} = 209$ МПа, при боковом давлении 150 МПа, $\sigma_{1y} = 250$ МПа, и при $\sigma_2 = 250$ МПа, $\sigma_{1y} = 330$ МПа. Опред

еление параметров деформационного упрочнения. Значение неупругой деформации определяли как разность между экспериментальным значением полной осевой деформации (ϵ_1) и расчетным упругим значением деформации (e_1) при соответствующем уровне осевого напряжения для каждого бокового давления.

На основании предыдущих исследований [4] теоретически осевая неупругая деформация представлена в виде:

$$\Gamma_1 = \frac{(1-\lambda)}{K} \left[\frac{\Delta \sigma_1}{\Delta \sigma_{1y}} - 1 \right]^{\alpha}, \tag{6}$$

где *K* и α – параметры материала; $\Gamma_1 = \varepsilon_1 - e_1$.

Неупругая деформация при этом разделена на чисто пластическую деформацию (Γ_1^+) и деформацию разрыхления (Γ_1^+). Они, в свою очередь, связаны (согласно гипотезе В.В. Новожилова о всестороннем равномерном разрыхлении [5]) соотношением:

$$\Gamma_{1}^{*} = \Gamma_{2}^{*} = \Gamma_{3}^{*} = -\lambda \Gamma_{1}^{+}, \qquad (7)$$

где λ – коэффициент разрыхления.

Найдем значение коэффициента разрыхления λ при каждом осуществленном боковом давлении, при котором в опыте наблюдается заметная неупругая деформация после достижения и превышения предела упругости. Таких давлений для данного материала всего три: при $\sigma_2 = 100$, 150 и 250 МПа; при меньших давлениях неупругая деформация при изменении напряжения от предела упругости до предела прочности фактически отсутствует.

За пределом упругости при фиксированном боковом давлении с ростом неупругой деформации параметр C изменяется незначительно (начиная с некоторого напряжения, превышающего предел упругости). Однако попытки выразить зависимость коэффициентов λ и K как функции от вида напряженного состояния C не привели к успеху из-за больших различий в характере деформационного упрочнения при исследовании трех боковых давлений. Поэтому проверена зависимость параметров λ и K от величины бокового давления σ_2 , полагая в формуле (6) $\alpha = 1$, т. е. учитывалось только линейное упрочнение.

Рассмотрим выражение для разности между продольной и поперечной деформациями ($\Gamma_1 - \Gamma_2$), что дает:

Рисунок 2 – Определение коэффициента разрыхления λ

$$\Gamma_1 - \Gamma_2 = \frac{3}{2K} \left[\frac{\Delta \sigma_1}{\Delta \sigma_{1y}} - 1 \right] = \frac{3}{2} \Gamma_1^+ \tag{8}$$

Данная зависимость характеризует только чисто пластическую деформацию Γ_1^+ . Это дает возможность по этой зависимости определить параметр *K*. Найдем его значение при деформациях Γ_1 и Γ_2 на пределе прочности при каждом из рассматриваемых боковых давлений. В результате получим зависимость, представленную на рисунке 1, где конкретное рассматриваемое напряжение $\sigma_2(\sigma_i)$ от бокового давления отнесено к фиксированному напряжению $\sigma_2 = 100 M\Pi a (\sigma_{100})$.

Если рассмотреть сумму продольной и удвоенной поперечной деформации, то получим выражение для компоненты деформации разрыхления:

$$\Gamma_1 + 2\Gamma_2 = -\frac{3\lambda}{K} \left[\frac{\Delta\sigma_1}{\Delta\sigma_{1ynp}} - 1 \right] = -3\Gamma_1^*, \tag{9}$$

где Γ_1^* – деформация разрыхления.

Из зависимости (9) при найденном выражении для параметра K определим значение коэффициента разрыхления λ (рисунок 2).

Рисунок 4 – График « $\Delta \sigma_1 - \Delta \varepsilon_1$ », $\sigma_2 = 150 M\Pi a$

В итоге расчетные и экспериментальные диаграммы упрочнения для всех боковых давлений представлены на трех диаграммах (рисунки 3–5).

Рисунок 5 – График « $\Delta \sigma_1 - \Delta \varepsilon_1$ », $\sigma_2 = 250 \ M\Pi a$

Графики показали, что наилучшее приближение между теорией и экспериментом достигается при боковом давлении, равном 250 *МПа*. При боковом давлении 100 *МПа* в эксперименте наблюдается запаздывание текучести после достижения предела упругости, что приводит к заметному расхождению между теоретическим и экспериментальным характерами упрочнения.

Вестник КРСУ. 2017. Том 17. № 5

Наличие большого объема экспериментальных данных позволяет уточнить теоретическую диаграмму упрочнения, определив значения параметра α , который фигурирует в формуле (6) при напряжении $\sigma_2=100$ МПа.

Таким образом, достигнуто приемлемое для практики соответствие между экспериментальными и теоретическими диаграммами деформации образцов мрамора как в упругой области деформирования, так и за пределом упругости вплоть до предела прочности при различных уровнях неравномерного трехосного сжатия.

Литература

1. Ставрогин А.Н. Прочность горных пород и устойчивость выработок на больших глубинах

/ А.Н. Ставрогин, А.Г. Протосеня. М.: Недра, 1985. 271 с.

- Михайлов-Михеев П.Б. Справочник по металлическим материалам турбино- и мотостроениия / П.Б. Михайлов-Михеев. М.: МАШГИЗ, 1961. 838 с.
- Клюшников В.Д. Математическая теория пластичности / В.Д. Клюшников. М.: Изд-во Моск. ун-та, 1979. 208 с.
- Рычков Б.А. О деформационном упрочнении горных пород / Б.А. Рычков // Изв. РАН. МТТ. 1999. № 2. С. 115–124.
- Новожилов В.В. О пластическом разрыхлении / В.В. Новожилов. Л.: Труды ЦКТИ, 2000. 230 с.