УДК 519.63:517.977

АДАПТИВНЫЙ ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ НЕЛИНЕЙНЫМ, НЕСТАЦИОНАРНЫМ АДВЕКТИВНЫМ ПЕРЕНОСОМ

Т.Т. Якиманская

Предложен численный метод решения задачи оптимального управления нелинейным, нестационарным адвективным переносом.

Ключевые слова: оптимальное управление; адвективный перенос; кусочно-линейный интерполянт; численный метод.

ADAPTIVE NUMERICAL METHOD FOR SOLVING OPTIMAL CONTROL PROBLEM FOR NONLINEAR, NONSTATIONARY ADVECTION PROBLEM

T.T. Iakimanskaia

The article suggests the numerical method for the solution of the optimal control problem of the advection and Burger's equation.

Keywords: optimal control problem; advection problem; piecewise linear interpolation; numerical method.

Предлагается метод численного решения проблемы управления процессом, который описывается задачей Коши для квазилинейного дифференциального уравнения с частными производными первого порядка. Критерием качества управления служит интегральный квадратичный функционал, зависящий от конечного состояния системы и управляющей функции. Метод базируется на условиях оптимальности в форме принципа максимума, и использует итерационный процесс специального вида. Доказаны эффективные оценки сходимости этого итерационного процесса. Разработан вычислительный алгоритм для решения нестационарного квазилинейного уравнения адвективного переноса, который позволяет улавливать такие особенности в решении, как приближение градиентной катастрофы.

Постановка задачи, условия оптимальности. Предполагается, что управляемый объект описывается нелинейным дифференциальным уравнением с частными производными вида

$$\psi_{t}(x,t) + \psi(x,t)\psi_{x}(x,t) = u(t)f(x,t), \ t \in (0,T], \ x \in R,$$
(1)

с известной функцией f(x,t), определенной на $[0,T] \times R$ и начальным условием

$$\psi(x,0) = \psi_0(x), \ x \in R,\tag{2}$$

где $\psi_0(x)$ — заданная функция из $L_2(R)$. Подобные задачи в случае заданной правой части рассматривались, например, в [1]; их решения, в отличие от решений линейных задач, могут обладать свойством неограниченного возрастания производной на конечном интервале времени. Этот эффект обычно называют градиентной катастрофой.

Допустимым управлением будем считать функцию u(t) принадлежащую пространству $L_2[0,T]$. Рассматриваемая здесь проблема состоит в том, чтобы найти допустимое управление $u^0(t)$ и соответствующее ему решение $\psi^0(x,t)$ задачи, такое, чтобы следующий интегральный квадратичный функционал

$$J[u,\psi] = \int_{\Omega} [\psi(x,T) - \psi_1(x)]^2 dx + \beta \int_{\Omega}^{T} u^2(t) dt$$
 (3)

принимал наименьшее возможное значение при $\mathbf{u}=\mathbf{u}^0,\,\psi=\psi^0$. Здесь $\beta>0,\psi_1(x)\in L_2(R)$ — параметр и функция, которые считаем заданными. Подобная проблема оптимального управления исследована в работе [2], где доказано, что она эквивалентна решению следующих, связанных между собой задач:

$$\Phi_{t}(x,t) + \psi(x,t)\Phi_{x}(x,t) = 0, \ t \in (0,T], \ x \in R,$$
(4)

$$\Phi(x,T) = -2[\psi(x,T) - \psi_1(x)], x \in R;$$
(5)

$$u(t) = \frac{1}{2\beta} \int_{\mathcal{B}} f(x,t) \Phi(x,t) dx, \tag{6}$$

где $\psi(x,t)$ – решение задачи. Предлагаемый вычислительный алгоритм основан на решении задач (1), (2), (4)–(6).

Итерационный процесс и оценка сходимости. Для решения задач (1), (2), (4)–(6) рассмотрим следующий итерационный процесс:

$$\begin{cases}
\frac{\partial \psi^{(s)}}{\partial t} + \psi^{(s)} \frac{\partial \psi^{(s)}}{\partial x} = u^{(s-1)}(t) f(x,t), & t \in (0,T], x \in \mathbb{R}, \\
\psi^{(s)}(x,0) = \psi_0(x), & x \in \mathbb{R};
\end{cases}$$

$$\begin{cases}
\frac{\partial \Phi^{(s)}}{\partial t} + \psi^{(s)} \frac{\partial \Phi^{(s)}}{\partial x} = 0, & t \in (0,T], x \in \mathbb{R}, \\
\Phi^{(s)}(x,T) = -2 \left[\psi^{(s)}(x,T) - \psi_1(x) \right], & x \in \mathbb{R};
\end{cases}$$

$$u^{(s)}(t) = \frac{1}{2\beta} \int_{\mathbb{R}} f(x,t) \Phi^{(s)}(x,t) dx,$$
(9)

 $s = 1, 2, \dots$ – итерационный параметр, $u^{(0)}(t)$ считается заданной. С использованием методики работы [3] нами доказаны следующие оценки для итерационного процесса:

$$\int_{R}^{T} \left[\psi^{(s)}(\mathbf{x}, T) - \psi(\mathbf{x}, T) \right]^{2} dx + \beta \int_{0}^{T} \left[u^{(s)}(t) - u(t) \right]^{2} dt \leq \beta \int_{0}^{T} \left[u^{(s-1)}(t) - u^{(s)}(t) \right]^{2} dt,$$

$$\beta \int_{0}^{T} \left[u^{(s)}(t) - u(t) \right]^{2} dt + \int_{0}^{T} \left[\psi^{(s)}(x, t) - \psi(x, t) \right]^{2} dx dt \leq \int_{0}^{T} \left[\psi^{(s-1)}(x, t) - \psi^{(s)}(x, t) \right]^{2} dx dt,$$

из которых следует, что сходимость (фундаментальность) последовательностей $u^{(s)}$ и $\psi^{(s)}$ влечет их сходимость к решению задачи оптимального управления.

Адаптивный метод решения задач. Рассмотрим задачу Коши для квазилинейного уравнения адвективного переноса:

$$\begin{cases} \psi_{t}(x,t) + \psi(x,t)\psi_{x}(x,t) = f(x,t), (x,t) \in G = R \times (0,T]; \\ \psi(x,0) = \psi_{0}(x), x \in R. \end{cases}$$
(10)

Будем считать, что f – непрерывна в области G; ψ_0 – непрерывна и имеет кусочно-непрерывную производную на R, причем, эта производная может иметь лишь конечное число точек разрыва первого рода. Наряду с задачей для любой точки $(x,t) \in G$ рассмотрим следующую краевую задачу для характеристической системы:

$$\begin{cases} \frac{dX}{d\tau} = U, \\ \frac{dU}{d\tau} = f(X,\tau), \quad 0 < \tau \le t, \\ U(0) = \psi_0(X(0)), \quad X(t) = x. \end{cases}$$
(11)

Предлагаемый вычислительный алгоритм был представлен в [4], и базируется на следующем утверждении, которое мы здесь не доказываем.

Теорема. I) Предположим, что для любых $(x,t) \in G$ задача имеет единственное решение $X(\tau) = X(\tau,x,t),\ U(\tau) = U(\tau,x,t),$ причем функции X и U для любого $\tau \in (0,t]$ обладают п.в. в G непрерывными производными по параметрам x и t. Тогда $\psi(x,t) = U(t,x,t)$ — решение задачи .

II) Если $\psi(x,t)$ – решение задачи , то функции $X(\tau)$ и $U(\tau)$, определяемые для любых $(x,t) \in G$ соотношениями:

$$\begin{cases} \frac{dX}{d\tau} = \psi(X(\tau), \tau), & \tau \in (0, t), \\ X(t) = x; \\ U(\tau) \equiv \psi(X(\tau), \tau), & \tau \in (0, t). \end{cases}$$

являются решениями задачи (11).

Алгоритм использует механизм адаптации сетки, который основан на оптимизации кусочно-линейного интерполянта. Для простоты рассмотрим отрезок [0,1], и сетку $\{x_i\} = \{x_i\}_{i=1}^I$, удовлетворяющую условиям:

$$0 = x_1 < x_2 < \dots < x_{I-1} < x_I = 1.$$

 $0=x_1 < x_2 < ... < x_{I-1} < x_I = 1.$ Пусть g(x) — достаточно гладкая функция, определенная на отрезке [0,1]. Будем считать, что кусочнолинейная функция

$$S\left(x,\left\{x_{i}\right\},\left\{g\left(x_{i}\right)\right\}\right) = \frac{x-x_{i}}{x_{i+1}-x_{i}}g\left(x_{i+1}\right) + \frac{x_{i+1}-x}{x_{i+1}-x_{i}}g\left(x_{i}\right), \ x \in \left[x_{i},x_{i+1}\right], \ i=1,2,...I-1,$$
 используется для приближенного описания $g(x)$ на сетке (12). Имеет место следующая оценка:

$$\int_{0}^{1} \left| g(x) - S(x) \right| dx \le \frac{1}{2} \sum_{i=1}^{N-1} \int_{x_{i}}^{x_{i+1}} \left(x_{i+1} - s \right) \left(s - x_{i} \right) \left| g''(s) \right| ds \equiv J(x_{1}, x_{2}, ...x_{t}). \tag{13}$$
 Будем считать, что искомая сетка доставляет минимум функционалу, определенному правой частью

формулы (13). Это, в силу (13), минимизирует интегральную норму в левой части этой оценки. Далее, система уравнений

$$x_1 = 0$$
, $\frac{\partial J(x_1, x_2, ...x_I)}{\partial x_i} = 0$, $i = 2, ...I - 1$; $x_I = 1$

 $x_1=0,\; \frac{\partial J\left(x_1,x_2,...x_I\right)}{\partial x_i}=0,\; i=2,..I-1;\; x_I=1$ решается итерационным методом Ньютона, который находит k-ое итерационное приближение $\left\{x_i^{(k)}\right\}$, если известно (k-1)-ое: $\{x_i^{(k-1)}\}$.

Перейдем к описанию алгоритма для решения задачи (10). Решение будем искать в области $[0,1] \times [0,T]$, в которой по переменной t используется сетка

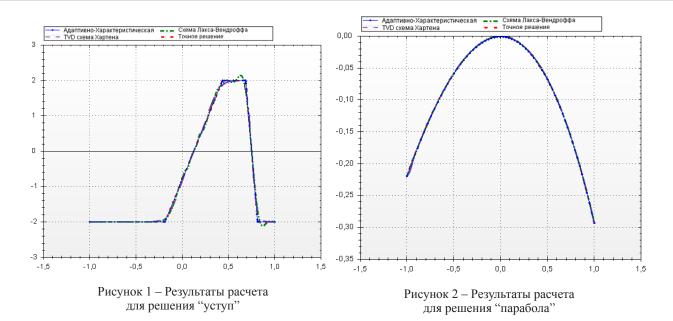
$$0 = t_0 < ... < t_n < ... < t_N = T$$

 $0 = t_0 < ... < t_n < ... < t_N = T \; ,$ ее шаги $\tau_n = t_n - t_{n-1}$ можно контролировать при приближении к моменту градиентной катастрофы (алгоритм дает такую возможность), а по переменной x используется адаптированная в каждый момент времени t_n сетка $\{x_{i,n}\} = \{x_{i,n}\}_{i=1}^{I}$. В момент времени t = 0 адаптируем сетку под начальное состояние $\psi_0(x)$, используя описанный выше алгоритм, и строим соответствующий интерполянт:

$$S(x,\{x_{i,0}\},\{\psi_0(x_{i,0})\})$$

Предположим, что $n \ge 1$ и в момент времени t_{n-1} найдена сетка $\{x_{i,n-1}\}$, вычислено решение $\{\psi_{i,n-1}\}$ задачи (10) в узлах этой сетки, и построен интерполянт $S\left(x,\left\{x_{i,n-1}\right\},\left\{\psi_{i,n-1}\right\}\right)$. Используем итерационный процесс для поиска адаптированной сетки $\left\{x_{i,n}\right\}$ и соответствующего решения $\left\{\psi_{i,n}\right\}$ задачи (10). На k-ом шаге этого процесса находим сетку $\left\{x_{i,n}^{(k)}\right\}$ и решение $\left\{\psi_{i,n}^{(k)}\right\}$ в соответствии с теоремой:

$$\begin{cases}
\frac{dX}{d\tau} = U, \\
\frac{dU}{d\tau} = f(X,\tau), t_{n-1} < \tau < t_n \\
U(t_{n-1}) = S(X(t_{n-1}), \{x_{i,n-1}\}, \{\psi_{i,n-1}\}), X(t_n) = x_{j,n}^{(k)} \\
\psi_{j,n}^{(k)} = U(t_n), j = 1, 2, \dots I.
\end{cases}$$
(14)



Интегрируя по ячейке $[t_{n-1},t_n]$, и используя простейшую квадратурную формулу для вычисления интегралов, получим:

$$\begin{cases}
X(t_n) = X(t_{n-1}) + \tau_n U(t_{n-1}), \\
U(t_n) = U(t_{n-1}) + \tau_n f(X(t_n), t_{n-1}), \\
U(t_{n-1}) = S(X(t_{n-1}), \{x_{i,n-1}\}, \{\psi_{i,n-1}\}), X(t_n) = x_{j,n}^{(k)}.
\end{cases}$$
(15)

Система (15) состоит из четырех уравнений и имеет четыре неизвестных, однако она нелинейна. Решить (15) удается благодаря тому, что интерполянт S(x) является кусочно-линейной функцией, запишем это решение. Выберем τ_n таким, чтобы выполнялось неравенство:

$$1+ au_nrac{oldsymbol{\psi}_{j+1,n-1}-oldsymbol{\psi}_{j,n-1}}{oldsymbol{x}_{j+1,n-1}-oldsymbol{x}_{j,n-1}}\!>\!0,\,\,$$
 для любого $j=1,2,...I-1,$

и находим і, при котором справедливо неравенство:

$$x_{i,n-1} + \tau_n \psi_{i,n-1} \le x_{j,n}^{(k)} \le x_{i+1,n-1} + \tau_n \psi_{i+1,n-1}.$$

Теперь находим:

$$X(t_{n-1}) = \left[1 + \tau_n \frac{\psi_{i+1,n-1} - \psi_{i,n-1}}{x_{i+1,n-1} - x_{i,n-1}}\right]^{-1} \cdot \left[x_{j,n}^{(k)} - \tau_n \frac{x_{i+1,n-1}\psi_i^n - x_{i,n-1}\psi_{i+1,n}}{x_{i+1,n-1} - x_{i,n-1}}\right],$$

и интересующее нас $U(t_n)$ вычисляем, используя второе уравнение в (15).

Результаты численных экспериментов. Опишем численные эксперименты, демонстрирующие эффективность адаптивно-характеристического метода. В качестве тестового уравнения рассматривалось уравнение Хопфа, называемое иногда бездиффузионным уравнением Бюргерса. Сравнение проводили с классическими схемами Лакса—Вендроффа [5] и TVD Хартена [6]. Для расчетов по уравнению Хопфа были выбраны две задачи, имеющие известное точное решение.

В качестве первой тестовой задачи выберем кусочно-линейное решение: так называемый "уступ", у которого одна сторона (левая) как бы "размывается", а вторая (правая) "опрокидывается". На рисунке 1 приведены графики точного и численного решения задачи в момент времени t = 0.93, число узлов n = 65,

параметр $\tau = 0,001\,$ на отрезке [0,1]. Относительная погрешность (%) адаптивно-характеристического метода составляет 0,05, Лакса—Вендроффа – 15,45, TVD Хартена – 14,30.

В качестве второй тестовой задачи выберем гладкое решение типа "парабола". На рисунке 2 приведены графики точного и численного решения в момент времени t=0,28, число узлов n=65, параметр $\tau=0,001$, относительная погрешность (%) адаптивно-характеристического метода -0, Лакса—Вендроффа -0, TVD Хартена -1,74. Видно, что решение, построенное с помощью адаптивно-характеристического метода, не осциллирует.

Численные эксперименты показали, что адаптивно-характеристический метод обеспечивает отсутствие осцилляций решения на разрыве и достаточно точно передает движущийся фронт волны.

Литература

- 1. *Рождественский Б.Л.* Системы квазилинейных уравнений и их приложения к газовой динамике / Б.Л. Рождественский, Н.Н. Яненко. М.: Наука, 1978. С. 687.
- 2. *Рафатов Р.Р.* Метод дополнительного аргумента в проблеме минимизации интегрального квадратичного функционала со связями в виде нелинейного уравнения с частными производными / Р.Р. Рафатов // Manas Journal of Engineering Science. Bishkek. 2004. Vol. I. Iss. V. C. 97–104.
- 3. *Lelevkina L.G.* Optimal control of heat conductivity / L.G. Lelevkina, O.S. Khlybov, S.N. Sklyar // Automation and Remote Control. 2008. V. 69. N 4. P. 654–667.
- 4. *Якиманская Т.Т.* Адаптивный численный метод решения задач нелинейного нестационарного адвективного переноса / С.Н. Скляр // Матер. 2-й межд. конф., посв. 20-летию образования КРСУ и 100-летию проф. Я.В. Быкова. Бишкек, 2013. Т. 1. С. 223.
- 5. Lax P.D. and Wendroff B. Difference Schemes for Hyperbolic Equations with High Order of Accuracy / P.D. Lax and B. Wendroff // Comm. Pure Appl. Math. 1964. No 17. P. 381–398.
- 6. *Harten A.* High Resolution Schemes for Hyperbolic Conservation Laws / A. Harten // J. Comp. Phys. 1983.V. 49. No. 3. P. 357–393.