УДК 621.43

АНАЛИЗ ЭФФЕКТИВНОСТИ ПАРОПОРШНЕВОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

А.В. Разуваев

Рассмотрены материалы анализа технической литературы по параметрам паровых поршневых машин различного применения и представленных авторами, проводящими работы в этом направлении.

Ключевые слова: анализ технической литературы; паровая поршневая машина; параметры паровой поршневой машины.

ANALYSIS OF EFFICIENCY OF STEAM-PISTON POWER PLANT

A.V. Razuvaev

The article considers the analysis of technical literature parameters of steam reciprocating machines for various applications and presented by the authors, conducting work in this direction.

Keywords: analysis of the technical literature; steam piston machine; the settings steam piston machines.

Эффективность применения паропоршневой машины для привода генератора и получения при этом электрической энергии, можно проанализировать по данным, имеющимся в научно-технической литературе.

Анализ имеющейся классификации паровых машин на основе их параметров и конструктивного исполнения показал, что паровые машины классифицируются: по величине давления пара: низкого до 1,2 МПа (до 12 кг/см²), среднего – до 6,0 МПа (до 60 кг/см²), высокого – более 6,0 МПа (более 60 кг/см²), по количеству оборотов вала: низкие – (до 100 об/мин), средние – (до 500 об/мин), высокие – (более 500 об/мин). По давлению отводимого пара: на конденсационные (давление в конденсаторе 0,1-0,2 ата), выхлопные (с давлением 1,1-1,2 ата), теплофикационные с отбором пара на нагревательные цели или для паровых турбин давлением от 1,2 до 60 ата в зависимости от назначения отбора, по количеству цилиндров: одноцилиндровые, многоцилиндровые и ряду других показателей.

Что касается параметров паровой машины, то в работе [1] представлены параметры новой на тот момент времени паросиловой установки — ЛПУ-1. Она отличалась паровым водотрубным котлом повышенного давления и высокооборотной паровой машиной, установленной на отдельной раме с электрогенератором.

Машина была создана в лаборатории паросиловых установок ВИМ в 1950 г. и имела следующие основные параметры:

Мощность электрогенератора	35 кВа
Число оборотов	16,6 с-1 (1000 об/мин)
Параметры пара:	давление 2,2 МПа (22 кг/см²) температура 648 К (375 °C)
Коэффициент использования тепла (при работе в теплофикационном режиме)	62 %
Количество тепла, отбираемого для теплофикации	15000 ккал/час
Паропроизводительность котла	300 кг/час
Поверхность нагрева	8 m ²
КПД котла	72 %
Мощность паровой машины	29,4 кВт (40 л.с.)
Вес установки	2300 кг

Установка ЛПУ-1 имела в 1,5 раза меньшую удельную металлоемкость, чем локомобиль П-25, а по экономичности превосходила его почти вдвое. Первый опытный образец установки ЛПУ-1 был построен и испытан в 1950—1952 гг., а с 1953 г. начато ее серийное производство.

В начале 90-х годов прошлого века в МАИ возобновились работы по паросиловой установке самолета. Работы велись в рамках курсового и дип-

Тип установки	Мощность установки, кВт	Частота вращения, об/мин	Давление пара, МПа абс		Температура	Удельный	
			на входе	на выходе	на входе, °С	расход пара, кг/кВт ч	
С паровой машиной паровоза серии П, 1950-е гг.	1177	212	1,47	0,2	390–409	10,5	
С автомобильным паровым мотором НАМИ-012, 1954 г.	67	600	2,2	0,2	360	10,3	
С современной паровой турбиной (ООО Ютрон)	5820	3000	2,35	0,196	390	10,5	

Таблица 1 – Данные о работе различных паровых установок и их удельных показателей

ломного проектирования. Опираясь на эти работы и исследования научной группы МАИ "Промтеплоэнергетика" в области паровых машин для котельных, стало возможным создать высокооборотную паровую машину на высокие параметры пара с высоким КПД $-25\,\%$ и более.

В целях снижения стоимости такая паровая машина может быть создана на базе устаревших нижнеклапанных бензиновых двигателей внутреннего сгорания. Подтверждающие такую возможность эксперименты были проведены с ДВС УД-2М. При этом был изменен только распредвал и головки цилиндров. Эксперименты проводились с рабочими телами низких параметров, их результаты в данной работе не приводятся.

В работе [2] отмечается экономическая эффективность применения паропоршневого двигателя, а также приводятся некоторые параметры имеющихся паросиловых установок. Расход пара паровинтовой машины мощностью 250 кВт составляет 9 т/час, а паротурбинной мощностью 500 кВт — 16 т/час.

Научной группой "Промтеплоэнергетика" МАИ ведутся разработки паропоршневых двигателей на базе серийных двигателей внутреннего сгорания, изобретений и ноу-хау, созданных её сотрудниками ранее. Мощность паропоршневых двигателей примерно равна мощности исходных бензиновых и дизельных двигателей при давлении пара 5–7 кг/см².

В этой же работе отмечается очень существенный недостаток при переделке серийных ДВС в паровые. Это касается наличия воды в масле.

Осуществлялся подбор масла, и рассчитывались режимы работы двигателя. В результате наработка до смены масла составили более 1 часа. В дальнейшем предстоит доработка системы смазки, что обеспечит безостановочную работу двигателя на весь отопительный сезон.

Ряд параметров по паровым машинам представлен в работе [3] и в таблице 1. В ней имеются сравнительные показатели основных данных о ра-

боте различных паровых установок и их удельных показателей.

В [3] даны и ресурсные показатели работы паровых машин. Так, ресурс до капитального ремонта паровых турбин (30000–50000 ч) определяется, в основном, ресурсом лопаток из дорогостоящих сплавов, а у паровых моторов (>50 000 ч) — гораздо большим ресурсом более дешевых узлов шатуннопоршневой группы.

Паровые моторы, как и паровые поршневые машины, обладают высокой надежностью. А ресурс до капитального ремонта ППД может быть выше, чем у исходных ДВС (30000–100000 ч), т. к. пар при работе двигателя, в отличие от горючей смеси, не взрывается, а расширяется и плавно давит на поршень. Для технического обслуживания турбин необходим высококвалифицированный персонал. Паровые моторы, как близкие по типу к ДВС, могут обслуживаться специалистами более низкой квалификации, а их ремонт можно производить прямо на месте эксплуатации.

В работе сделаны следующие выводы:

- ▶ паромоторные мини-ТЭЦ энергоэффективнее паротурбинных. Для них удельный расход пара в электроагрегатах на выработку электроэнергии в 1,3–1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при электрических мощностях до 1200 кВт;
- ресурс до капитального ремонта у современных паровых моторов для мини-ТЭЦ, по крайней мере, не ниже чем у паровых турбин лопаточного и винтового типов.

В.А. Жигалов в своей работе [4] отмечает, что наибольшее распространение имеют электростанции с ДВС, работающие на жидком топливе. Имея большие затраты на топливо, они производят самую дорогую электроэнергию. Кроме того, имеющимися средствами удается использовать лишь небольшую часть сбрасываемого такими двигателями тепла. Решающим аргументом в пользу их применения являются невысокие требования

Начальное давление 1,2 МПа	t, °C	187	200	220	240	260	280	300
	h1,кДж/кг	2778	2810	2860	2910	2950	3000	3050
	Состояние пара	x =1	Перегр.	Перегр.	Перегр.	Перегр.	Перегр.	Перегр.
Конечное давление 0,3 Мпа	t1, °C	134	134	134	134	134	134	140
	h2,кДж/кг	2540	2570	2600	2630	2660	2700	2740
	Состояние пара	x =0,92	x =0,94	x =0,95	x =0,96	x =0,98	x =0,99	Перегр
	d,кг/кВт*ч	15,1	15,0	13,8	12,9	12,4	12,0	11,6
Конечное давление 0,4 МПа	t1,°C	144	144	144	144	144	150	170
	h2,кДж/кг	2590	2620	2655	2690	2720	2760	2800
	Состояние пара	x =0,94	x =0,95	x =0,96	x =0,98	x =0,99	Перегр.	Перегр.
	d,кг/кВт*ч	19,1	18,9	17,6	16,4	15,7	15,0	14,4
Конечное давление 0,6 МПа	t1, °C	159	159	159	159	185	195	215
	h2,кДж/кг	2660	2690	2730	2770	2800	2840	2880
	Состояние пара	x =0,97	x =0,98	x =0,99	x =1	Перегр.	Перегр.	Перегр.
	d,кг/кВт*ч	30,5	30,0	27,7	25,7	24,0	22,5	21,2

Талица 2 – Значения параметров пара после машины при $P_{_{\rm Hat}} = 1,2~{\rm M}\Pi a$

к обслуживающему персоналу и небольшие затраты на приобретение и запуск таких станций.

Электростанции с ДВС, которые работают на магистральном или попутном газе, имеют приемлемую стоимость электроэнергии, однако регион их применения ограничен только газифицированными районами. То же относится и к электростанциям с газовыми турбинами.

Электростанции с паровыми турбинами, работающие на местных видах топлива, сами имеют высокую стоимость и большие эксплуатационные расходы. И так же, как газотурбинные электростанции, они требуют обслуживания специалистами высокой квалификации.

Указанных недостатков лишены малые тепловые электростанции (МТЭС), в которых для привода генератора используются поршневые паровые машины.

КПД стационарных паровых машин, достигнутый еще 60 лет назад, составлял 22 %. Для повышения общего КПД установки должна использоваться энергия, оставшаяся в паре после его срабатывания в машине. Мятый пар направляется на технологические нужды или для теплоснабжения. В этом случае КПД МТЭС может достигать 70 %.

Рассмотрен случай, когда пар после срабатывания в машине (мятый пар) использовался на технологические нужды. В этом случае требуется температура пара выше 403К (130 °С), а значит, давление пара после машины должно быть не ниже 0,3 МПа. В таблице 2 приведены значения параметров пара после машины при начальном его давлении 1,2 МПа и различных величинах перегрева при расширении до давления 0,3, 0,4 и 0,6 МПа. Пар таких параметров может быть получен от котлов типа ДЕ, КЕ или ДКВР. Конечное давление 0,3–0,6 МПа можно получить при работе машины в режиме однократного расширения и подаче пара в цилиндры в течение 0,25–0,5 хода поршня от ВМТ.

Паровые двигатели успешно используются рядом компаний в таких областях как: лесная и бумажная промышленность, стекольная, керамическая и химическая промышленность, муниципальные сооружения, очистительные предприятия, пищевая промышленность — на мукомольных и маслобойных заводах.

Представляет интерес и опыт использования поршневых паровых машин немецкой фирмы Spilling [5].

Уникальная конструкция парового двигателя этой фирмы используется для привода генерато-

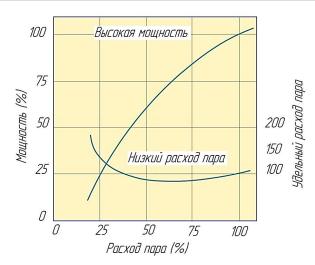


Рисунок 1 – Кривая мощности и потребления пара паровой машины фирмы Spilling

ра, он также подходит для паросиловых установок как малых, так и средних мощностей благодаря его функциональным возможностям. С помощью простой модульной системы, состоящей из стандартизированных компонентов с 1—6 цилиндрами и 15 различными типами цилиндров, он адаптирует свои паровые двигатели для различных эксплуатационных условий наилучшим способом. В зависимости от степени повышения рабочего давления, пар расширяется в одной или нескольких ступенях. Многоступенчатые двигатели позволяют контролировать расширение пара под определенное давление.

Особая система, регулирующая подачу пара, в сочетании с механическими преимуществами поршневого двигателя, обеспечивают оптимальную рабочую эффективность (КПД), широкий диапазон управления и высокую производительность в условиях частичных нагрузок.

Паровые двигатели не нуждаются в смазке цилиндров и, таким образом, предохраняют пар от присутствия масла.

Приводятся и основные его характеристики. Три производственные серии (7TS, 12 TS, 14 TS), отличающиеся по диаметру и ходу поршня, предназначены для применения со следующими параметрами:

- производительность пара до 40 т/ч;
- давление на впуске 6–60 бар;
- выходная мощность до 1500 кВт;
- прямое подключение генератора или двигателей.

На рисунке 1 приводится кривая мощности и потребления пара паровой машины.

Таким образом, проведенный анализ позволяет сделать вывод, что паровые поршневые машины имеют право на существование, хотя и имеют ряд недостатков, в частности, по энергетической эффективности. Однако возможности современных технологий, а также различные сферы их применения позволят компенсировать эти недостатки.

Литература

- 1. Беляев А.А. Паросиловая установка (локомобиль), не подлежащая регистрации в органах Госгортехнадзора с топкой кипящего слоя на древесных отходах / А.А. Беляев, В.С. Дубинин, К.М. Лаврухин, Л.И. Першин, Д.П. Титов // Труды межд. научн.-практ. конф. 11–14 октября 2005 г., г. Москва. М., 2005. С. 225–229.
- 2. Дубинин В.С. Паропоршневые двигатели обеспечат экономичную работу котельных автономно от потерявших в 21 веке надежность электросетей РАО "ЕЭС России" / В.С. Дубинин, К.М. Лаврухин, Л.И. Першин, Д.П. Титов, А.А. Аникеев // Труды межд. научн.-практ. конф. 11–14 октября 2005 г. М., 2005. С. 229–234.
- 3. *Трохин И.С.* Мини-ТЭЦ с паровыми моторами реальность XXI века / И.С. Трохин // ТехСовет. 2013. №. 5. С. 20–21.
- Жигалов В.А. Малая тепловая электростанция это реально! / В.А. Жигалов // Новости теплоснабжения. 2006. № 1 (65).
- 5. http://www.hansaenergo.ru/parovye-dvigateli.