УДК 616.831-001.31/.35-03

ФАРМАКОКОРРЕКЦИЯ ПРОГЕСТЕРОНОМ ДЛИТЕЛЬНОГО ТЕЧЕНИЯ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ

А.Д. Ниязалиева

Проанализированы экспериментальные исследования, проведенные на животных и свидетельствующие о незначительном эффекте действия прогестерона при длительных течениях черепно-мозговой травмы.

Ключевые слова: травма головного мозга; прогестерон; длительное течение; животные; лейкоцитарная формула; лейкоцитоз; коррекция.

FARMACOCORRECTION OF LONG DURATION OF CRANIOCEREBRAL TRAUMAS BY PROGESTERONE

A.D. Nijazalieva

The article contains findings of experimental work on animals testifying to having some effect of progesterone in long duration of craniocerebral traumas.

Keywords: craniocerebral traumas; progesterone; long duration; animals; leukocytic formula; leukocytosis; correction.

Актуальность. Экспериментальная патофизиология располагает достаточным количеством фактов, позволяющих рассматривать травмы головного мозга как одну из важнейших проблем медицины. Из-за травмы в кровеносной системе наблюдаются стойкие изменения, вызывающие повреждение главных физиологических функций организма. Некоторые проведенные исследования показали, что многие фармакологические средства в экспериментальных моделях ЧМТ на животных демонстрируют нейропротекторную эффективность, хотя ни один из них не показал заметного эффекта в клинических испытаниях [1, 2].

Изучению конечных результатов травмы головного мозга посвящены обзорные работы многих исследователей, в которых в качестве ответной стресс-реакции организма вовлекается система крови, и через некоторое время после ЧМТ вокруг места первичной травмы отмечается гибель нейронов [3].

В последние годы внимание исследователей привлек прогестерон. Было показано, что наряду с хорошо изученными репродуктивным и эндокринным эффектами, прогестерон играет важную роль в регуляции пластических процессов в го-

ловном, спинном мозге и периферической нервной системе [4, 5].

Целью настоящей работы явилось изучение изменений общей картины лейкоцитарной формулы в мазках крови на 15-й день течения ЧМТ.

Эксперименты изучения травмы головного мозга проводились на лабораторных крысах массой 230-250 г. Животные содержались в виварии на обычном рационе и были разделены на 3 группы: 1-я – контрольная, 2-я – группа животных с черепно-мозговой травмой (ЧМТ) и 3-я группа – фармакокоррекция прогестероном. Прогестерон вводили через 30 минут после травмы, а также на 1-е и 2-е сутки опыта, в дозе 30 мг/кг. Травму наносили специальным устройством: масса грузика составила 91 г, высота 90 см, что соответствовало 0,9 Дж. На 15-й день животных выводили из эксперимента. Проводили забор биологического материала. Из крови готовились мазки, которые в последующем окрашивались по методу Романовского -Гимзы. В мазках крови изучали количественное содержание лейкоцитов, процентное соотношение выражали на 100 клеточных элементов. Одновременно в камере Горяева подсчитывали количественное содержание кариоцитов.

Экспериментальное изучение мазка крови у травмированных крыс показало выраженную гипохромную анемию, что характеризует снижение гемоглобина с 12.4 ± 0.3 г/л до 9.1 ± 0.1 г/л в крови.

Подсчет количества эритроцитов на 15-й день развития травмы головного мозга показал его среднее содержание от $3.2 \times 10^9 \pm 0.2$ до $2.8 \times 10^9 \pm 0.1$ от всего объема эритроцитов. Важно отметить, что фармакологическое действие прогестерона, по нашим данным, не дало лечебного эффекта при более длительных сроках течения ЧМТ, поскольку препарат не является, с одной стороны, стимулятором эритропоэза, с другой — не оказывает угнетающего действия на пролиферацию кроветворных клеток.

Количество белых кровяных клеток в более поздние сроки развития ЧМТ показало умеренный лейкоцитоз, по сравнению контрольной группой, от $1.7 \cdot 10^6 \pm 0.01$ до $2.0 \cdot 10^6 \pm 0.01$ мкл. Картина лейкоцитарной формулы свидетельствовала о заметном изменении в суммарном соотношении всех пяти видов лейкоцитов. Общий фон подсчета среднего соотношения лейкоцитарной формулы (рисунок 1) в мазке крови экспериментальных крыс на 58 % представлен лимфоцитами и на 1 % – моноцитами. При этом содержание лимфоцитов у экспериментальных животных после коррекции прогестероном отмечалось увеличение его количества до 71 % по сравнению с опытными животными. Однако мы полагаем, что полученные данные исследования о повышенном содержании лимфоцитов, к сожалению, не несут ценного прогноза после коррекции прогестероном травмы головного мозга, поскольку повышение процентного содержания иммунных клеток может быть и следствием абсолютного нейтрофильного лейкоцитоза. Про-

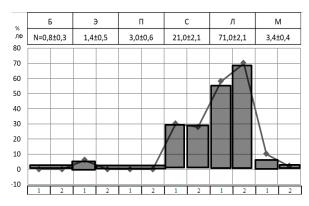


Рисунок 1 — Уровень содержания лейкоцитов на 15-й день после ЧМТ у опытных крыс после коррекции прогестероном (N = норма; 1 — ЧМТ; 2 — коррекция прогестероном)

цент содержания эозинофилов и базофилов в крови отмечается не более 1 %. Процесс длительного развития травмы головного мозга привел к заметному исчезновению палочкоядерных лейкоцитов и базофилов, после коррекции прогестероном отмечается отсутствие их в мазках крови. Увеличение количества сегментоядерных клеток с 28-30 % посттравматической коррекции прогестероном, оценивается как проявление ответной стресс-реакции на развитие течения травматического состояния. Экспрессдиагностика мазка крови по колебанию содержания эозинофилов и моноцитов от 1 до 6 % свидетельствует о снижении функции иммунной системы, способствующей распространению инфекции и интоксикации организма на момент развития травматического состояния.

После длительного течения стресс-воздействия на организм у экспериментальных животных в костном мозге подсчитано число кариоцитов. Результаты исследований показали уменьшение количества ядер, содержащих элементы, с $1.8 \cdot 10^6 \pm 0.01$ до $1.2 \cdot 10^6 \pm 0.01$ по сравнению с нормой после коррекции прогестероном. Такая реакция красного костного мозга позволяет нам оценить динамику как закономерное явление. Доверительное уменьшение числа кариоцитов, по сравнению с нормой, позволяет предполагать о снижении миграции гемопоэтических клеток и их созревании в источнике кроветворения. На наш взгляд, повреждение головного мозга в динамике общей реакции организма приводит к изменению многих показателей системы крови и обменных процессов, которые могут наступать одновременно, свидетельствуя о тяжелом прогнозе течения посттравматического процесса.

Таким образом, наряду с увеличением числа лейкоцитов при нарастании длительности течения травмы головного мозга меняется общая картина лейкоцитарной формулы. При исследовании крови, гематологическая картина у экспериментальных животных свидетельствовала о повышенном лейкоцитозе, что в начале стресс-синдрома могло носить перераспределительный характер клеток. Значительное нарастание отдельных лейкоцитов в крови можно истолковывать как неблагоприятный признак, указывающий на нарушение гемопоэза у животных. Экспериментальные наблюдения указывают также на то, что имеет место лимфоцитоз, колебание числа эозинофилов и моноцитов. Кроме того, длительное течение травмы головного мозга приводит к исчезновению палочкоядерных лейкоцитов и базофилов.

Подводя итоги исследованию длительного наблюдения травмы головного мозга, можно сказать,

что фармакокоррекция прогестероном не оказала заметного эффекта восстановления нарушений гемопоэза, а только отметила его колебания в сторону увеличения или уменьшения.

Литература

- 1. Faden A.I. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition // Curr. Opin. Neurol. 2002. Dec;15 (6):707–12.
- 2. McKee J.A., Brewer R.P., Macy G.E. et al. Magnesium neuroprotection is limited in humans with acute brain injury // Neurocrit. Care. 2005; 2: 342–351.
- 3. *Белошицкий В.В.* Современные принципы моделирования черепно-мозговой травмы в эксперименте / В.В. Белошицкий // Нейронауки: теоретические и клинические аспекты. 2005. № 1. С. 10–11.
- 4. *Koenig H.L., Schumacher M., Ferzaz B. et al.* Progesterone synthesis and myelin formation by Schwann cells // Science. 1995; 268:1500–1503.
- 5. *Djebaili M., Guo Q., Pettus E.H. et al.* The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats // J. Neurotrauma. 2005; 22: 106–118.