УДК 624.012.45

РАСЧЕТ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ И ИХ ФРАГМЕНТОВ МЕТОДОМ СОСРЕДОТОЧЕННЫХ ДЕФОРМАЦИЙ

Ш.С. Абдыкеева

Рассмотрены модели изгибаемых железобетонных конструкций и их фрагменты. Приведена расчетная модель системы, основанная на методе сосредоточенных деформаций.

Ключевые слова: железобетонные конструкции; изгибаемые конструкции; метод сосредоточенных деформаций; расчетная модель.

CALCULATION OF BENT REINFORCED CONCRETE STRUCTURES AND THEIR FRAGMENTS BY THE METHOD OF CONCENTRATED DEFORMATIONS

Sh.S. Abdykeeva

The article considers the bent reinforced concrete structures and their fragments. The target model of system based on the method of concentrated deformations is given.

Keywords: reinforced concrete structures; bent constructions; concentrated deformation method; design model.

Дискретные модели для изгибаемых железобетонных плит в форме жестких элементов (брусьев), соединенных упругими связями, сопротивляющихся изгибу и кручению, предлагались и ранее, например, в [1, 2].

Расчетная модель, основанная на методе сосредоточенных деформаций, отличается от известной своей общностью и универсальностью; она позволяет вести расчет конструкций, составленных из разнотипных элементов (имеющих различные размеры и физические характеристики); кроме того, элементы могут иметь реальные связи между собой, что характерно для железобетонных плитных конструкций (перекрытий, элементов каркаса многоэтажных зданий и т. д.) [3].

Рассмотрим вначале изгибаемую конструкцию постоянной толщины, изотропную в упругой стадии работы без реальных швов. Исходная изгибаемая железобетонная конструкция сплошного сечения развивается плоскостями сосредоточенных деформаций на прямоугольные (квадратные) элементы размером $a_k \cdot s_k$ (рисунки 1–3).

Рассматривая элементы метода сосредоточенных деформаций как жесткие на изгиб, кручение и сдвиг (срез) из своей и в своей плоскости, введем между ними условные (фиктивные) связи, способные сопротивляться изгибу, кручению, сдвигу и сжатию-растяжению. Характеристики жесткости этих связей должны быть приняты такими, чтобы исходная конструкция и ее модуль сосредоточенных деформаций были эквивалентными. В этом случае при действии нагрузки обеспечиваются одинаковые прогибы, углы поворота, величины изгибающих и крутящих моментов и поперечных (перерезывающих) сил в интересующих нас сечениях.

Задачу о напряженно-деформированном состоянии изгибаемой конструкций будем решать на основе метода перемещений. Каждый элемент метода сосредоточенных деформаций закрепляется фиктивными связями, исключающими его поворот вокруг оси X, поворот вокруг оси Z и перемещение в направлении оси Y.

Аналогичные связи вводятся во всех других элементах метода сосредоточенных деформаций. На рисунках 2 и 4 показана схема внутренних сил по плоскостям сосредоточенных деформаций. Внешние силы сводятся к узловым, прикладываемым в местах фиктивных связей метода перемещений. Чаще всего эти внешние силы — поперечная нагрузка из плоскости конструкций, однако нагрузки могут быть приложены в виде изгибающих моментов, что не меняет последовательности расчета и его трудоемкости.

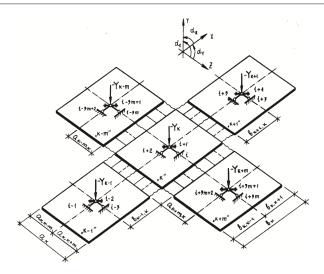


Рисунок 1 — Связи метода перемещений для плосконапряженного состояния изгибаемой железобетонной конструкции

Напряженно-деформированное состояние железобетонных конструкций раскрывается из системы алгебраических линейных уравнений метода перемещений в общей форме:

$$[R] \cdot \{v\} = \{P\},\tag{1}$$

где [R] – матрица внешней жесткости для всей рассчитываемой системы; $\{\upsilon\}$ – вектор искомых перемещений, его элементы – перемещения элементов метода сосредоточенных деформаций (по два угловых и одному линейному для каждого); $\{P\}$ – вектор нагрузок, его элементы – сосредоточенные силы и изгибающие моменты, действующие в узлах закрепления элементов метода сосредоточенных деформаций.

По перемещениям на основе общих зависимостей определяются внутренние силы:

$$\{F\} = [\dot{\Im}] \cdot \{\lambda\},\tag{2}$$

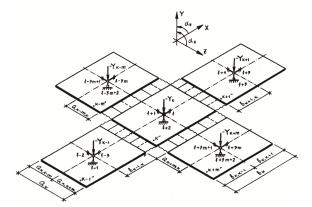


Рисунок 3 — Схема метода сосредоточенных деформаций изгибаемой пластины

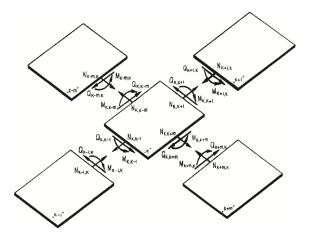


Рисунок 2 – Внутренние силы плосконапряженного состояния изгибаемой железобетонной конструкции

где $\{F\}$ — вектор внутренних сил, элементами которого являются внутренние силы по плоскостям сосредоточенных деформаций; $[\mathfrak{I}]$ — матрица внутренней жесткости системы, ее элементы — внутренние силы по плоскостям сосредоточенных деформаций от единичного взаимного смещения соседних элементов метода сосредоточенных деформаций; $\{\lambda\}$ — вектор сосредоточенных деформаций (взаимных смещений и поворотов элементов метода сосредоточенных деформаций сосредоточенных деформаций).

Для всех сечений элементов метода сосредоточенных деформаций по плоскостям сосредоточенных деформаций принимается гипотеза плоских сечений.

Система алгебраических уравнений (1) решается относительно вектора перемещений $\{\upsilon\}$. Для этого должны быть известны матрица внеш-

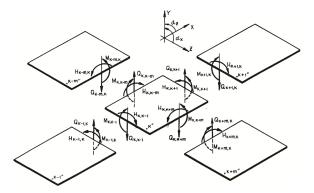


Рисунок 4 — Внутренние силы метода сосредоточенных деформаций изгибаемой пластины

ней жесткости [R] и вектор узловых нагрузок {P}. Имея расчетную модель, без особых затруднений можно составить вектор внешних сил {P}. Основная трудность заключается в формировании матрицы внешней жесткости системы [R]. Для ее построения можно применить способ единичных перемещений элементов метода сосредоточенных деформаций в направлении наложенных связей [4, 5]. Однако, как показала практика, удобнее воспользоваться формулой

$$[R] = [A] \cdot [K] \cdot [A]^{T}, \tag{3}$$

где [A] – матрица коэффициентов уравнений равновесия элементов метода сосредоточенных деформаций; [A]^T – матрица, транспонированная с матрицей коэффициентов уравнений равновесия [A]; [K] – матрица внутренней жесткости сечений.

Согласно формуле (2) связь между внутренними усилиями по плоскостям сосредоточенных деформаций и соответствующими деформациями для типового конечного элемента метода сосредоточенных деформаций запишем в матричном виде (рисунки 2 и 4):

$$\{F\}_{k} = [\Im]_{k} \cdot \{\lambda\}_{k}, \tag{4}$$

где $\{F\}_k$ – вектор внутренних сил по граням конечного элемента по плоскостям сосредоточенных деформаций; $[\Im]_k$ – матрица жесткости сечений для конечного элемента по тем же граням; $\{\lambda\}_k$ – вектор соответствующих деформаций.

Аналогичным образом сечение между к-м и (к-т)-м элементами запишется как связь между внутренними силами и соответствующими дефор-

мациями и будет сформирована матрица внешней жесткости всей плоскоизгибной системы.

Литература

- 1. Александровский С.В. Зависимость деформаций ползучести стареющегося бетона от начального уровня напряжений / С.В. Александровский, В.В. Соломонов // Межотраслевые вопросы строительства Отечественный опыт. Вып. 6. М., 1972. С. 116–118.
- 2. Анг А.Г.С. Численный метод расчета неразрезных плит / А.Г.С. Анг, Н.М. Ньюмак // Расчет строительных конструкций с применением электронных машин / под ред. А.Ф. Смирнова. М.: Стройиздат, 1967. С. 13–18.
- Абдыкеева Ш.С. Некоторые вопросы сейсмостойкости несущих железобетонных конструкций зданий и сооружений / Ш.С. Абдыкеева // Вестник КРСУ. 2012. Т. 12. № 7. С. 35–39.
- 4. Зулпуев А.М. Пространственная работа сборных железобетонных плит перекрытий многоэтажных зданий и сооружений / А.М. Зулпуев, М.Т. Насиров, Ш.С. Абдыкеева. Бишкек: Айат, 2016. 130 с.
- Зулпуев А.М. Теоретические исследования предельного состояния фрагмента междуэтажного перекрытия на вертикальные нагрузки методом сосредоточенных деформаций / А.М. Зулпуев, Б.С. Ордобаев, Ш.С. Абдыкеева // Известия вузов. 2014. № 11. С. 18–21.