УДК 622.831

ВЛИЯНИЕ РТ-УСЛОВИЙ НА УПРУГИЕ СВОЙСТВА КРИСТАЛЛИЧЕСКИХ ГОРНЫХ ПОРОД

Э. Мамыров, В.А. Маханькова

Рассмотрено влияние РТ-условий на изменения упругих свойств кристаллических горных пород.

Ключевые слова: давление; температура; плотность; скорость распространения упругих волн; упругие параметры горных пород.

INFLUENCE OF PT-CONDITIONS ON ELASTIC PROPERTIES CRYSTAL ROCKS

E. Mamyrov, V.A. Mahankova

The paper considers the influence of PT-conditions on changes of elastic properties of crystal rocks.

Key words: pressure; temperature; density; speed of distribution of elastic waves; elastic parameters of rocks.

Упругие свойства горных пород (плотность ρ , скорость распространения поперечных V_S и продольных V_P упругих волн)являются фундаментальными исходными параметрами для расчета и прогнозирования их механической прочности. До последнего времени разрушение горных пород рассматривалось феноменологически и определялось как предельное состояние бесструктурного континуума, возникающее тогда, когда приложенное напряжение достигает величины некоторого предела прочности. В последние годы стали учитывать атомное строение твердых тел и их реальную структуру с различными дефектами, которые способны небольшие напряжения повысить до значения предела прочности [1–4].

В настоящее время установлено, что физическая прочность твердых тел обусловлена силами взаимодействия между атомами (молекулами) или ионами, составляющими тело. Эти силы определяются энергией атомизации (испарения, сублимации) структурных частиц твердого тела. В свою очередь энергия межатомного и межмолекулярного взаимодействия единицы массы E_m и структура твердого тела (минералов, горных пород) определяют их упругие свойства [3, 4].

Следует особо подчеркнуть, что в различных кристаллографических направлениях скорость распространения упругих волн в минералах различна. В таблицах 1, 2 приведены величины ρ_0 , V_{P0} , V_{S0} , σ_{H0} , $E_m^{-1/2}$ ряда минералов для стандартных условий: P=0,1 МПа, T=298,1 К.

Многочисленные экспериментальных данные по изменениям упругих свойств горных пород для термодинамических условий земной коры позволяют сделать следующие основные выводы: 1) для всех типов кристаллических горных пород одновременное воздействие РТ-параметров (для глубин 5-15 км) приводит к увеличению (от стандартных значений) V_P на 10–20 % и V_S на 5–10 %; 2) для РТ-условий глубин 2,5-50 км наблюдается увеличение отношения $Vp/V_s = R_1$ горных пород от 3-5 % до 10-15 %, что приводит к росту коэффициента Пуассона σ_{Π} ; 3) увеличение объемной плотности г пород при одновременном воздействии РТ-условий земной коры до глубин 50 км близко к линейным; 4) изменения V_{P} , V_{S} и σ_{π} до глубин 50 км являются нелинейными и их градиенты возрастают с ростом геотермического градиента; 5) при известных гидростатических давлениях и геотермических градиентах земной коры до глубины 50 км воздействие давления на скорость распространения упругих волн в кристаллических породах является доминирующим; указанная закономерность может быть нарушена в зонах активных разломов.

Минерал,	$ρ_{O}$ κΓ/M ³	_I , Γ	$V_{\rho}0$	V _{so}	$E_m^{1/2}$	R_{01}	$\sigma_{_{\Pi0}}$	$\frac{V_{s0}}{r^{1/2}}$
брутто-формула	7 0,	I'		м/с		01	110	$\overline{E_m^{1/2}}$
1	2	3	4	5	6	7	8	9
Бромеллит ВеО	3000	12,51	12050	7345	6880	1,640	0,204	1,067
Периклаз MgO	3583	20,16	9692	6041	4980	1,604	0,182	1,213
Известь СаО	3285	28,04	7945	4812	4360	1,651	0,210	1,104
SrO	4700	51,81	6070	3450	3140	1,760	0,261	1,099
Вюстит FeO	5863	35,92	6220	3040	3600	2,046	0,343	0,844
Магнезиовюстит $Mg_{0.25}Fe_{0.75}O$	5288	32,00	6930	3710	3850	1,868	0,29 9	0,964
$\mathrm{Mg}_{0.5}\mathrm{Fe}_{0.5}\mathrm{O}$	4723	28,04	7730	4430	4290	1,745	0,255	1,033
$\mathrm{Mg}_{0.75}\mathrm{Fe}_{0.25}\mathrm{O}$	4153	24,11	8610	5190	4510	1,659	0,215	1,151
Цинкит ZnO	5624	40,68	5939	2803	3000	2,119	0,357	0,934
$a\alpha$ — Кварц SiO_2	2650	20,00	6050	4090	5590	1,479	0,079	0,732
Коэсит SiO ₂	2920	20,00	7530	4190	5570	1,797	0,276	0,752
Стишовит SiO ₂	4280	20,00	11000	5500	5520	2,000	0,333	0,996
Аржютита-GeO ₂	4280	34,90	4100	2550	3728	1,608	0,185	0,684
g-GeO,	6280	34,90	8560	4900	3715	1,747	0,256	1,319
Касситерит SnO,	7020	50,23	6950	3400	3030	2,044	0,344	1,122
Рутил ТіО2	4260	26,63	9260	5170	4900	1,791	0,270	1,055
ТорианитThO,	9700	88,01	5300	3243	2960	1,634	0,200	1,094
Уранинит UO,	10950	90,01	5065	2928	2801	1,730	0,250	1,045
Вольфрамит WO ₃	7500	57,96	4200	1800	3250	2,333	0,387	0,554
Корунд a -Al ₂ O ₃	3972	20,39	10845	6373	5460	1,702	0,236	1,167
Эскалоит Сг,О,	5233	30,40	8730	5010	4200	1,742	0,254	1,193
Гематита-Fe ₂ O ₃	5254	31,94	7901	4163	3890	1,898	0,308	1,070
Якобсит MnFe ₂ O ₄	5051	32,95	7415	3702	3804	2000	0,333	0,973
Магнетит Fe_3O_4	5163	33,08	7190	4270	3814	1,684	0,228	1,119
Траворит NiFe ₂ O ₄	5313	33,49	7226	3663	3770	1,973	0,327	0,972
Шпинель MgAl ₂ O ₄	3619	20,32	9914	5645	5374	1,756	0,260	1,050
Xромит Cr ₂ FeO 4	4600	31,98	8645	4780	4045	1,808	0,280	1,182
Пирит FeS ₂	4930	40,00	7910	5030	3074	1,572	0,160	1,636
Сфалерит ZnS	4087	48,72	5216	2527	2510	2,064	0,347	1,007
Штиллеит ZnSe	5260	72,17	3920	2010	1895	1,950	0,324	1,061
ZnTe	5720	96,50	4120	1960	1553	2,100	0,354	1,262
Гринокит CdS	4825	72,23	4180	1866	1930	2,240	0,374	0,967
Кадмоселит CdSe	5810	95,68	3856	1521	1590	2,535	0,408	0,957
Галенит PbS	7500	119,63	3754	2088	1546	1,798	0,275	1,351
Клаустолит PbSe	8150	143,10	2740	1440	1345	1,900	0,305	1,071
Алтаит PbTe	8240	167,40	2400	1200	1196	2,000	0,333	1,003
Киноварь HgS	8100	116,33	2400	1270	1306	1,890	0,305	0,972
Тиманит HgSe	8260	139,80	2250	1150	1110	1,950	0,354	1,036
Колорадоит HgTe	8080	164,10	2110	1050	1023	2,010	0,335	1,026

Таблица 2 — Стандартные величины $\rho_{_{0^{\prime}}}$ $V_{_{P0^{\prime}}}$ $V_{_{S0^{\prime}}}$ $\sigma_{_{I\!I\!0}}$ и $E_{_{m}}^{^{1/2}}$ для породообразующих минералов

			P0 50 11	0 m								
Минерал, брутто-формула	$\rho_{\rm O.}$ KF/M ³	$M_{_1}$, г	V_{p_0}	V _{so}	$E_m^{1/2}$	R_{01}	σ	$\frac{V_{\scriptscriptstyle S0}}{E_{\scriptscriptstyle m}^{\scriptscriptstyle 1/2}}$				
	,		м/с				$\sigma_{_{\Pi O}}$	$E_m^{1/2}$				
1	2	3	4	5	6	7	8	9				
Гранаты												
Пироп $Mg_3Al_2Si_3O_{12}$	3705	20,15	8920	5000	5416	1,784	0,271	0,923				
Гроссуляр Ca ₃ Al ₂ Si ₃ O ₁₂	3597	22,52	9290	5450	5196	1,704	0,237	1,049				
Спессартин $Mn_3Fe_2Si_3O_{12}$	4247	27,74	8640	4770	4621	1,811	0,281	1,032				
Альмандин Fe ₃ Al ₂ Si ₃ O ₁₂	4183	24,88	8510	4780	4832	1,780	0,270	0,989				
Андрадит $Ca_3Fe_2Si_3O_{12}$	3860	25,40	8480	4830	4758	1,756	0,260	1,015				
Оливины. Ортосиликагы												
ФорстеритMg ₂ SiO ₄	3222	20,12	8590	5040	5289	1,704	0,234	0,953				
Оливин Сан-Карлос	3355	21,10	8340	4822	5160	1,729	0,248	0,934				
Mg ₁₀ ,Fe ₀₄ SiO ₄	3440	21,93	8116	4663	5045	1,740	0,254	0,924				
MgFeSiO ₄	3780	24,60	7534	4213	4733	1,788	0,273	0,890				
Фаялит Fe ₂ SiO ₄	4393	29,10	6637	3494	4308	1,899	0,308	0,811				
β **- sp Mg ₂ SiO ₄	3472	20,12	9798	5730	5208	1,710	0,240	1,100				
$\beta * * - sp Fe_2SiO_4$	4712	29,10	7689	3936	4275	1,953	0,322	0,921				
γ **-sp Mg ₂ SiO ₄	3548	20,12	9960	5791	5130	1,720	0,244	1,129				
γ^{**} - sp Fe ₂ SiO ₄	4848	29,10	8050	4100	4243	1,963	0,325	0,966				
Циркон ZrSiO ₄	4700	30,55	8040	3980	4710	2,020	0,340	0,845				
Либенбергит Ni,SiO ₄	4930	24,90	7290	4150	4105	1,757	0,260	1,011				
γ^{**} - sp. Ni_2SiO_4	5350	29,90	8436	4766	4043	1,770	0,265	1,179				
			Пироксен	НЫ	,							
Сподумен LiAlSi ₂ O ₆	3160	18,60	9470	5710	5660	1,658	0,214	1,009				
Жадеит NaAISi,O	3400	20,20	8780	5030	5390	1,745	0,255	0,933				
Эгирин NaFeSi,O	3550	23,10	7250	4090	5020	1,773	0,267	0,815				
Ортоэнстатит $Mg_2Si_2O_6$	3200	20,08	8020	4860	5389	1,650	0,210	0,902				
Диппсид MgCaSi ₂ O ₆	3270	21,66	7850	4520	5249	1,737	0,252	0,861				
Геденбергит FeCaSi,O6	3640	24,81	7460	4120	4864	1,811	0,281	0,847				
Ортоферросилит Fe ₂ Si ₂ O ₆	4000	26,39	6530	3610	4633	1,809	0,280	0,779				
Алюминевый ортопироксен	3306	21,22	8150	4860	5332	1,677	0,224	0,911				
Каркасные алюмосиликаты. Плагиоклазы												
Анортит An ₁₀₀ CaAl ₂ Si ₂ O ₈	2760	21,40	7000	3760	5360	1,862	0,300	0,701				
Битовнит Ab ₂₀ An ₈₀	2730	21,15	6550	3540	5378	1,850	0,293	0,658				
Лабрадор Ab ₄₀ . An ₆₀	2700	20,91	6450	3500	5395	1,843	0,291	0,649				
Олигоклаз $Ab_{80}An_{20}$	2640	20,42	6240	3400	5419	1,835	0,289	0,627				
$Ab_{95}An_5$	2610	20,24	6100	3350	5435	1,821	0,284	0,616				
Альбит Ab NaAlSi ₃ O ₈	2605	20,17	6060	3350	5450	1,809	0,280	0,615				
Ортоклаз KAl Si ₃ O ₈	2580	21,40	5900	3070	5290	1,922	0,310	0,580				
Нефелин $Na_{0.8}K_{0.2}SiO_4$	2623	20,80	5900	3450	5220	1,710	0,240	0,661				
1 0.0 0.2 - 4	_		истые сил			· / -						
Мусковит KAl ₃ Si ₃ O ₁₀ (OH) ₃	2880	20,96	5800	3360	5460	1,726	0,247	0,615				
Флогопит	2780	20,86	5390	3100	5380	1,739	0,253	0,576				
$\mathrm{KMg_3AlSi_3O_{10}OH)_2}$ Биотит $\mathrm{KFe_3AlSi_3O_{10}(OH)_2}$	3070	27,44	6050	3100	4773	1,952	0,322	0,649				

Влияние давления на упругие параметры горных пород обычно оценивается полуэмпирическими формулами через изменения плотности или удельного объема ΔV , но более теоретически обоснованной является зависимость относительного изменения скорости, в частности, $\Delta Vp(P)$ от полной объемной деформации ε_p , вызванной ростом давления при стандартной температуре $T=298^{\circ}\mathrm{K}=\mathrm{const.}$ Величина ΔV_p равна [4]:

$$V_{p}(P) = V_{p}(P)/V_{p_0} - 1,$$
 (1)

где $V_{p}(P)$ — скорость распространения продольных волн при давлении $P;\ V_{p0}$ — стандартное значение скорости P-волн.

Значение $\varepsilon_{\rm p}$ определяется из формулы:

$$\varepsilon_P = 3P (1 - 2 \sigma_{II0})/E_0, \tag{2}$$

где $\sigma_{I\!I\!0}$ — стандартное значение коэффициента Пуассона; E_0 — стандартное значение модуля Юнга.

Установлено, что изменения $\Delta V_P(P)$ можно выразить формулой $(P \le 3 \ \Gamma \Pi a)$:

$$\Delta V p(P) = 1,075 + 0,5 X_e - \exp[(-2,59) - 220 X_e],$$
 (3) где $X_e = e_p^{0,5}$.

Из (1) и (3) величина $V_p(P)$ будет равна:

$$Vp(P) = V_{p0} \{1,075+0,5\ X_e - \exp[(-2,59)-220\ X_e]\},(4)$$
 где первые два члена отражают медленный рост V_P пород при давлениях выше $0,1$ ГПа $(\varepsilon_P > 10^{-3})$, а совместно с экспоненциальной составляющей формула (4) отражает резкое увеличение V_P в области малых давлений, когда наблюдается влияние закрытия микропор и микротрещин на изменения $V_P(P)$.

В формуле (4) для области $X_e \ge 0.03$ экспоненциальным членом можно пренебречь. Поэтому для $P \ge 0.1$ ГПа выражение (4) можно переписать в следующем виде ($P \le 3$ ГПа):

$$V_p(P) = V_{p0} (1,075 + 0.5 X_a).$$
 (5)

В публикациях величины $V_p(P)$ в породах приводятся при $P \geq 0,1$ ГПа, а для расчетов $V_p(P)$ по (1)–(5) необходимо знать стандартные величины $V_{P0},~V_{S0}$ и ρ_0 . Нами установлено, что значение V_{P0} (при известных $P,~\rho_0$ и $\sigma_{I\!I\!I\!0}$) можно определить из выражения:

$$V_{P0} = 0.93 \{V_{P}(P) - 0.5 [(3P R_{10}^{2} (1 - 2\sigma_{I10}))/(2r_{0} (1 + \sigma_{I10}))]^{0.5}\}, (6)$$

где R_{10} — стандартное отношение V_{P0}/V_{S0} , величину ${\bf S}_{T0}$ можно выбрать по составу пород.

Значение $V_p(P)$ (при известных V_{p_0} , V_{s_0} и r_0) для области давлений $P \le 3$ ГПа можно определить из более простого выражения:

$$V_p(P) = V_{po}(1 + 0.292 \varepsilon_p^{1/6}).$$
 (7)

Изменение отношения $V_P(P)/V_S(P) = R_1(P)$ с ростом давления выражается формулой:

$$R_1(P) = R_{10}(1 + 0.06X_{\rho}).$$
 (8)

Откуда скорость распространения упругих волн $V_{c}(P)$ при давлении P будет равна:

$$V_{s}(P) = V_{p}(P)/R_{1}(P) =$$

=
$$[V_{p_0}(1+0.292 \varepsilon_p^{1/6})]/[R_{10}(1+0.06 X_p)].$$
 (9)

Влияние температуры на скорость распространения упругих волн в кристаллических горных породах почти не изучено из-за сложности проведения лабораторных экспериментов и слабой теоретической обоснованности.

В основе количественных соотношений по зависимости упругих модулей от T лежат теоретические положения физики твердого тела о снижении энергии химических связей с ростом температуры, тепловое расширение и ангармоничность колебаний атомов в узлах кристаллической решетки. На рисунке 1 приведена зависимость относительного изменения $DV_p(T)$ от объемной температурной деформации ε_T для ряда минералов.

Вывод формулы для температурной зависимости модуля упругости E (или G — модуля сдвига) основан на рассмотрении эффективной деформации цепочки осцилляторов. Ангармоничность колебаний атомов учитывается потому, что в разложении потенциальной энергии по смещениям оставлен член, представляющий третью степень смещения.

Для модуля Юнга E справедливо следующее выражение:

$$E = E_0 [1 - k_T f(T/\theta_D)],$$
 (10)

$$f(T/\theta_D) = 3(T/\theta_D)4\int_{0}^{\theta_D/T} [x^3(e^X-1)^{-1}]dx$$
, (11)

где E_0 – модуль упругости при $T=0^{0}{\rm K},~x=h~f_{D}/k_{B}$ $T,~k_{T}=9~\alpha_{V}~\theta_{D}~L~(C_{1}/C);~a_{V}$ – предельное значение коэффициента объемного теплового расширения;

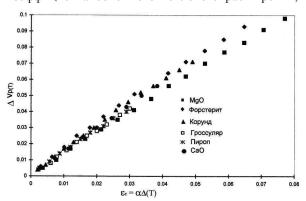


Рисунок 1 — Зависимость относительного изменения скорости распространения продольных упругих волн $\Delta V_p(T)$ от объемной температурной деформации $\varepsilon_T = \alpha \Delta T$ для ряда минералов (по данным [5])

 L – длина цепочки, соответствующая смещению a_0 ; C, C_1 – коэффициенты при второй и третьей степенях смещения в выражении для потенциальной энергии.

Выражение (10) дает возможность качественно проследить характер изменения модулей упругости с ростом температуры. Значения коэффициента k_{T} в (10) зависят от a_{V} и чем больше коэффициент объемного теплового расширения (слабые связи между атомами), тем больше скорость уменьшения упругих модулей с ростом Т. Из (10) и (11) следует, что в области низких температур, близких к абсолютному нулю ($\theta_D > T, T \to 0^{0}$ К), значения модуля упругости E_0 должны уменьшаться с ростом T пропорционально T^4 . Действительно, при T > 0°K выражение (11) принимает вид:

$$f(T/\theta_D) = (\pi^4/5) (T/\theta_D)^4$$
 (12)

и соответственно

$$E_T = E_0 \left[1 - k_T (\pi^4/5) (T/\theta_{D)}^4 \right], \tag{13}$$

где $E_{\scriptscriptstyle T}$ – модуль при данном T.

Для области высоких температур
$$(T > \theta_D)$$
:
$$f(T/\theta_D) = 3(T/\theta_D) 4 \int\limits_0^{\theta_D/T} x^2 dx = T/\theta_D, \tag{14}$$
 откуда

 $E = E_0 [1 - k_T (T/\theta_D)].$

Зависимости вида (13) для низких T и вида (15) для высоких температур ($T > \theta_{\rm D}$) характерны для многих кристаллов. Так как в формулы при расчетах упругих модулей входят величины $V_{\scriptscriptstyle p}^{\; 2}$ или V_s^2 , то выражение (15) можно трансформировать к следующему виду:

$$V_{_P}{^2}(T) = V_{_{P00}}{^2} \left[1 - k_{_T}(T/\theta_{_D})\right], \tag{16}$$
 где $V_{_{P00}}$ – скорость продольных волн при $T=0$ °K.

Анализ экспериментальных данных с использованием теоретических выражений (15) и (16) позволил получить следующую формулу:

$$V_p(T) = V_p(P) (1 - \alpha_{\rm T} \alpha_{\rm D})^{0.5},$$
 (17)

где $V_p(P)$ – скорость V_p при данном давлении; $\alpha_{\rm T}$ – эмпирический коэффициент ($a_{\rm T}$ = 0,0–0,10); $\alpha_D = (T - T_0)/\theta_D$, T_0 – стандартная температура, $T_0 = 293$ °K (20 °C).

В (17) параметры \mathbf{a}_{T} и \mathbf{a}_{D} являются аналогами k_T и T/θ_D и в (15) стандартная $T_0 = 293$ °K (20 °C), т. к. в публикациях при этой температуре приводятся величины V_{p} для разных P, хотя в термодинамике в качестве стандартной принята температура 298,1°К (25 °C). Установлено, что величина $a_{\rm T}$ для горных пород зависит от относительной температуры $\theta_D/T_0(\theta_D \ge 445^{\circ} \text{K}, a_T \ge 0.05)$:

$$a_{\rm T} = 0.027 + 0.026 (\theta_{\rm p}/T_0) - \exp[26.5 - 20(\theta_{\rm p}/T_0)].$$
 (18)

Формула (18) применяется для кристаллических горных пород при $\theta_D \ge 445^{\circ} {
m K}, \ \alpha_{
m T} = 0.05 \ {
m при}$ $\theta_D \le 445^{\circ} \text{K} - \text{для всех типов горных пород.}$

С ростом T и P изменение соотношения V_p/V_s можно определить из выражения:

$$R_{\rm l}(P,{
m T})=R_{\rm l0}\,(1+0.02~\alpha_{\rm D}+0.06~X_{\rm e}),$$
 (19) где $R_{\rm l}(P,T)$ — отношение V_p/V_S для данных РТ-условий.

Выражение (19) позволяет при известных величинах V_P , θ_D и P определить скорость $V_S(P,T)$ поперечных волн в горных породах при различных РТ-условиях.

Таким образом, скорость распространения продольных упругих волн $V_p(P,T)$ в горных породах при различных РТ-условиях земной коры $(P \le 3 \ \Gamma\Pi a, T \le 1600$ °К) на основе (7) и (17) можно определить из выражения:

$$V_p(P,T) = V_{p_0} (1 + 0.292 \, \varepsilon_p^{1/6}) (1 - a_T \, \alpha_D)^{0.5}.$$
 (20)

Используя (19) и (20), по известным величинам V_{PO} и R_{10} можно рассчитать $V_{S}(P,T)$ горных пород, примеры которых приведены на рисунке 2.

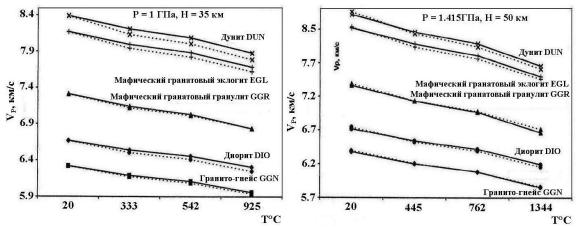


Рисунок 2 – Экспериментальные (сплошная линия, по [6]) и расчетные (пунктир) значения $V_{\nu}(P,T)$ кристаллических пород при различных температурах

Изменение плотности r(P,T) при различных PT-условиях рассчитывается по формуле:

$$\rho(P,T) = r_0 \{1 + 0.7 \left[(V_p(P,T)/V_{pQ}) - 1 \right]^2 \}.$$
 (21)

При определении упругих параметров кристаллических горных пород для различных РТ-условий необходима определенная последовательность вычислений и аргументация выбранных параметров. Во всех расчетах предполагаются известными величины стандартных значений $\rho_0,\ V_{PO}$ и V_{SO} , по которым и определяются величины модулей $E,\ G,\ K_{S}$ и σ_{T} .

Таким образом, упругие свойства и плотность горных пород в значительной степени определяются их минеральным составом. Изменениям химического состава, структуры и удельной энергии химических связей единицы массы рудных минералов и основных классов породообразующих силикатов соответствуют закономерные изменения их упругих свойств.

Воздействие высоких давлений и температур на упругие свойства горных пород в глубоких слоях земной коры имеет двойственный характер: 1 — последовательное повышение всестороннего давления приводит к росту плотности и скорости распространения упругих волн в породах; 2 — под влиянием высоких температур происходит тепловое расширение и увеличение среднего межа-

томного расстояния в минералах, что неизбежно вызывает уменьшение плотности и упругих параметров пород.

Литература

- Журков С.Н. Кинетическая концепция прочности твердых тел / С.Н. Журков // Вестник АН СССР. 1968. № 3. С. 46–52.
- Журков С.Н. Физические основы прогнозирования механического разрушения / С.Н. Журков, В.С. Куксенко, В.А. Петров // ДАН СССР. 1981. Т. 259. № 6. С. 1350–1353.
- 3. *Мамыров* Э. Взаимосвязь удельной энергии атомизации с механической прочностью минералов и горных пород / Э. Мамыров // ДАН СССР. 1988. Т. 301. № 6. С. 1341–1344.
- Мамыров Э. Упругие свойства кристаллических горных пород в термодинамических условиях земной коры Тянь-Шаня / Э. Мамыров. Бишкек: Илим, 2001, 159 с.
- Anderson O.L. Thermoelastic parameters for six minerals at high temperature / O.L. Anderson, D.I. Issak, H. Oda // J. Geophys. Res. 1991. 96. NB11. P. 18.037–18.046.
- Christensen N.I. Seismic velocity structure and composition of the continental crust: a global view / N.I. Christensen, W.D. Mooney // J. Geophys. Res. 1995. 100. P. 9761–9788.