УДК 556.18 (575.2-17)

МОДЕЛИРОВАНИЕ ВОДНОГО БАЛАНСА В НИЖНЕЙ ЗОНЕ БАССЕЙНА РЕКИ СОКУЛУК

Н.В. Ершова, В.А. Биленко, Н.А. Арынова

Описана математическая модель, разработанная для расчета параметров водного баланса для нижней зоны бассейна р. Сокулук.

Ключевые слова: моделирование; водный баланс; р. Сокулук; водоподача; дренажный сток; испарение.

MODELLING OF WATER BALANCE FOR THE LOWER PART OF THE SOKULUK RIVER

N.V. Ershova, V.A. Bilenko, N.A. Arynova

The paper describes the mathematical model developed for water balance calculation, for the lower part of the Sokuluk River Basin.

Key words: modeling; water balance; Sokuluk river; water supply; drainage runoff; evaporation.

Моделирование водного баланса орошаемых территорий необходимо для оценки всех составляющих водного баланса, знание которых позволяет рационально управлять водными ресурсами и обеспечивать хорошее эколого-мелиоративное состояние орошаемых земель.

Основой моделирования является уравнение водного баланса [1], которое для рассматриваемой территории имеет вид:

 $\Delta D = (I-Q) + (I_g - Q_g) + (P-I_i) - E, \qquad (1)$ где ΔD — суммарное изменение запасов воды в границах балансового участка за расчетный период; I — приток поверхностных вод; Q — отток поверхностных вод за пределы балансового участка; I_g — приток грунтовых вод; Q_g — отток грунтовых вод; P — атмосферные осадки; I_i — поверхностный сток; E — суммарное испарение.

Такие характеристики как осадки (P), водоподача (I), дренажный сток (Q_g) измерялись на воднобалансовом участке в течение вегетационного периода 2011 г. и эти данные являлись исходными при составлении модели. Однако суммарное испарение для балансового участка сложно оценить с помощью приборов. Поэтому для оценки суммарного испарения использовались расчетные методы на основе данных по землепользованию и метеорологических данных. Наличие большого массива данных привело к выделению из общей модели подмодели расчета суммарного испарения.

В основу подмодели расчета суммарного испарения легли два метода: метод Н.Н. Иванова и метод Φ AO [2, 3].

На первым этапе вычисляли испаряемость по формуле Н.Н. Иванова:

 ${\rm E_0}$ =0,0061(25 + T)2(1 – 0,01 a), (2) где T – средняя за декаду температура воздуха, °C; a – средняя за декаду относительная влажность воздуха, %.

На втором этапе рассчитывали суммарное испарение по методу ФАО [2] по формуле

$$E = K_c + E_0, \tag{3}$$

где K_c — коэффициенты культуры; E — суммарное испарение; E_0 — испаряемость.

Коэффициенты культуры зависят от вида культуры и фазы её развития.

Модель подсчета водного баланса орошаемой территории была составлена в программе с открытым кодом "R" [4]. Одним из достоинств программы является возможность использования пространственных данных.

В качестве исходных данных модели были использованы ежедневные данные Кыргызгидромета по температуре и влажности по метеостанции Бишкек за 2011 г. и данные полевых измерений на воднобалансовом участке, а также карта землепользования.

Карта землепользования региона создавалась на основе 7-ми спектрального космического

Рисунок 1 – Карта землепользования

снимка искусственного спутника Земли LANDSAT с разрешением 15 м за 21 августа 2011 г. [5]. Для этой цели была произведена автоматическая контролируемая классификация космического снимка с помощью программ OGIS и GRASS. Процесс классификации заключался в отнесении пикселей изображения с определенными значениями спектральной яркости к определенным классам объектов на местности [6, 7]. Создание карты землепользования включало два этапа. Первым этапом было полевое дешифрирование, в процессе которого с помощью GPS-приемника были определены координатные отметки основных классов землепользования (ячмень, помидоры и др.). Были взяты координатные отметки около 50 точек, в которые входили 10 классов землепользования. Вторым этапом была автоматическая классификация в программном комплексе OGIS.

В результате проведенной классификации была получена карта землепользования исследуемой территории (рисунок 1). Распределение площадей классов землепользования в км² от общей площади рассматриваемой территории, полученное на основании подсчета площадей классов землепользования на карте, представлено на рисунке 2, из которого видно, что наибольшую территорию

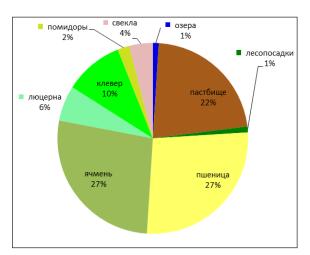


Рисунок 2 – График распределения площадей классов землепользования в км2 от общей площади рассматриваемой территории

занимают такие культуры, как пшеница и ячмень. Пастбища также покрывают значительную территорию — до 22 % от всей площади. Такие культуры как люцерна, свекла, помидоры занимают незначительную часть территории от 2 до 4 %.

Результатом подсчета модели являются: испаряемость, суммарное испарение и невязка, т. е. то количество воды, которое идет на подпитку грунтовых вод.

Рассмотрим элементы водного баланса, полученные при подсчете моделью. На рисунке 3 представлены составляющие водного баланса территории. Видно, что водоподача в 2011 г. составила 1750 мм, что значительно выше испарения, которое составило 1202 мм, следовательно, излишек воды, который составил 759 мм, будет обуславливать

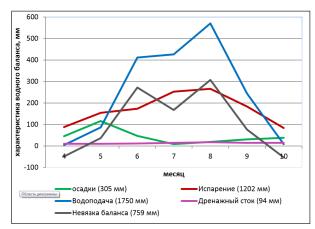


Рисунок 3 – Составляющие водного баланса территории

поднятие уровня грунтовых вод на рассматриваемом участке и неблагоприятно отразится на эколого-мелиоративном состоянии территории.

Создание математической модели подсчета элементов водного баланса орошаемой территории является предварительным этапом оценки взаимосвязи уровня грунтовых вод и элементов водного баланса. Количественная оценка этой взаимосвязи позволит в дальнейшем выработать рекомендации для рационального управления водными ресурсами в регионе.

Литература

1. *Дунин-Барковский Л.В.* О водном балансе орошаемой территории / Л.В. Дунин-Барковский // Изв. АН СССР. Сер. геогр., 1956. С. 61–73.

- Allen R.G., Pereira L.S., Raes D., Smith M. Crop evaporation. Guidelines for computing crop water requirements / R.G. Allen, L.S. Pereira, D. Raes, M. Smith // Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nation, 1998. 300 p.
- 3. *Иванов Н*. Об определении величин испаряемости / Н. Иванов // Изв. Всесоюз. геогр. общ. 1964. Т. 86. № 2. С. 189–196.
- 4. https://www.rstudio.com
- 5. http://landsat.usgs.gov//index.php
- 6. Ершова Н.В. Анализ подстилающей поверхности и растительности в бассейне р. Сокулук с использованием дистанционного зондирования и ГИСтехнологий / Н.В. Ершова, О.М. Стрижанцева, Б.О. Аскаралиев // Матер. межд. конф. по геодезии и геоинформатике. 2007. С. 125–127.
- 7. http://gis-lab.info/qa/grass-ismap.html