УДК 616.1-092.9-03:[591.112.2(23.01):612.393.1] (575.2) (04)

ИЗМЕНЕНИЯ ЭЛЕКТРОКАРДИОГРАММЫ ПРИ ДЛИТЕЛЬНОМ УПОТРЕБЛЕНИИ АЛКОГОЛЯ У РЕАДАПТИРУЮЩИХСЯ К НИЗКОГОРЬЮ КРЫС И ПРИМЕНЕНИИ МИЛДРОНАТА

В.М. Петров

Проанализировано нарушение процессов сократимости, возбудимости и проводимости при длительном употреблении алкоголя. Рассмотрено положительное влияние на эти функции милдроната с использованием электрокардиограммы.

Ключевые слова: алкогольная кардиомиопатия; ЭКГ; милдронат; реадаптация; низкогорье.

Почти все больные хроническим алкоголизмом страдают той или иной формой сердечной патологии, которая зачастую является причиной внезапной смерти. Наиболее часто встречается алкогольная артериальная гипертензия и алкогольная кардиомиопатия. У больных нарушается метаболизм в ткани сердца, отмечаются выраженные изменения на ЭКГ [1, 2].

Алкогольная кардиомиопатия обычно встречается у людей среднего возраста, зачастую истощенных, с большим сроком употребления алкоголя. Механизм поражения миокарда еще недостаточно изучен. Доказано, что алкоголь ведет к накоплению в кардиомиоцитах жирных кислот в результате недостатка энергии, необходимой для их деятельности. Ацетальдегид, возникающий при метаболизме алкоголя, является фактором прямого токсического влияния на протеиновый синтез [3].

Почти у каждого четвертого больного хроническим алкоголизмом наблюдаются нарушения функции возбудимости (экстрасистолия, пароксизмальная тахикардия, пароксизмы мерцания и трепетания предсердий, постоянная форма мерцательной аритмии). Мерцательная аритмия встречается у 20 % больных алкогольной кардиомиопатией и сочетается с сердечной недостаточностью различной степени выраженности [4].

У больных алкогольной кардиомиопатией электрокардиограмма, как правило, изменена, причем ее изменения обнаруживаются даже при отсутствии клинических проявлений заболевания. Наиболее часто регистрируются изменения

конечной части желудочкового комплекса: смещение интервала ST книзу от изолинии (иногда даже горизонтальный тип смещения, что требует дифференциальной диагностики с ИБС), снижение амплитуды зубца Т, его сглаженность или даже негативность. В грудных отведениях этот зубец двухфазный или высокий. Увеличение амплитуды положительного зубца Т считается наименее стойким, обычно появляется во время синусовой тахикардии и после ее исчезновения нормализуется [5]. Пароксизмы мерцательной аритмии, или пароксизмальной тахикардии, часто возникают после алкогольного эксцесса (синдром "праздничного", или "воскресного", сердца) уже в первые 6 часов после приема больших количеств алкоголя [6].

Лечение и реабилитация больных алкоголизмом является сложной медико-социальной проблемой. Устранение последствий алкоголизма является весьма важной задачей для теоретической и практической медицины. Поэтому поиск эффективных фармакологических веществ, способных устранить последствия алкогольной интоксикации, является одной из актуальных проблем [7].

Из современных препаратов с широким спектром действия привлекает внимание милдронат. Итогом научной деятельности И.Я. Калвиньеша стала разработка лекарственных средств для цитопротекции в условиях ишемии, результатом которой и явилось создание милдроната [8]. Оригинальное антиишемическое средство — милдронат—производит АО "Гриндекс". Этот препарат был разработан в Институте органическо-

го синтеза АН Латвии в 1975 г., а в клинической практике применяется с 1984 г.

Механизм его действия определяется многообразием фармакологических эффектов: повышение работоспособности, уменьшение симптомов психического и физического перенапряжения, активация тканевого и гуморального иммунитета, кардиопротекторное действие [8]. При этом всегда отмечалось улучшение качества жизни, даже устранение трудностей в учебе [9].

Влияние длительного употребления алкоголя на изменения сердечной деятельности у адаптировавшихся в горах животных после возвращения в низкогорье не изучено.

В связи с вышеизложенным, целью настоящего исследования являлось изучение изменения ЭКГ у реадаптировавшихся к низкогорью крыс после пребывания в высокогорье с принудительной алкоголизацией и применением милдроната.

Материал и методы. Исследования выполнялись в лаборатории экспериментального моделирования патологических процессов (ЭМПП) при кафедре физиологических дисциплин Кыргызско-Российского Славянского университета (в условиях низкогорья, г. Бишкек, 760 м над ур. м.).

В качестве экспериментальных животных использовались белые крысы, которые были разделены на 4 группы:

I группа – низкогорная (интактная группа);

II группа – с реадаптацией к низкогорью после предварительной 60-дневной адаптации в высокогорье (перевал Туя-Ашу, 3200 м над ур. м.);

III группа – с реадаптацией и принудительной алкоголизацией в течение 60 дней;

IV группа – с реадаптацией и принудительной алкоголизацией в течение 60 дней + фармкоррекция милдронатом (1 раз в сутки в дозе 15 мг/кг веса внутрибрюшинно в течение последних 20 дней опыта).

Эксперименты проводились в строгом соответствии с положениями IV Европейской конвенции по защите животных и в соответствии с требованиями "Правил проведения работ с использованием экспериментальных животных". (Приказ МЗ СССР от 12 августа 1977 года № 755.)

Животных содержали в условиях сбалансированного питания, подвергали принудительной алкоголизации, когда раствор этанола был единственным источником жидкости [10]. Использовали различные концентрации (10 дней – 5%-ный р-р этанола, 10 дней – 10%-ный, 20 дней – 15%-ный и в дальнейшем поили 20%-ным спир-

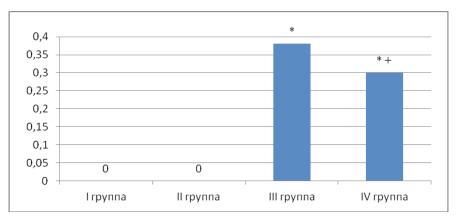
том). Эта методика является оптимальной для создания хронического алкоголизма и позволяет добиться добровольного потребления животными максимально больших доз алкоголя, при которых он оказывает токсическое действие на организм [11].

Содержание этанола в крови определяли алкилнитритным газохроматографическим методом в республиканском бюро судебномедицинских экспертиз перед забоем [12]. Количественное определение этанола в двух пробах проводили по программе "Аналитик". Для каждого объекта вычисляли среднее значение.

Регистрация ЭКГ осуществлялась на электрокардиографе ЭК1Т-03М (перед забоем) в трех стандартных отведениях с помощью игольчатых электродов, вводимых под кожу конечностей, под эфирным наркозом у животных, фиксированных на животе. Скорость протяжки ленты была 50 мм/сек, величина стандартного мм/вольта составляла 10 мм.

Статистическая обработка материала проводилась методом вариационной статистики с помощью компьютерных программных пакетов Statlab и Microsoft Excel. Вычислялось среднее значение (М), ошибка средней величины (m). Разницу средних величин оценивали по t-критерию Стьюдента [13] и вероятности P, которую признавали статистически значимой при P < 0.05.

Графические иллюстрации построены при помощи компьютерных программных пакетов Microsoft Excel.


Результаты исследования. Исследование алкоголя в крови показало (см. рисунок), что у животных I и II групп, не употреблявших алкоголь, его не обнаружено, в III группе после приема алкоголя в течение 60 дней его уровень составил 0.38 ± 0.14 . У крыс, которым с 40-го по 60-й день алкоголизации вводили милдронат, его концентрация в крови была снижена до 0.3 ± 0.13 (P < 0.05).

Изучение ЭКГ показало, что у здоровых животных низкогорья (см. таблицу) частота сердечных сокращений (ЧСС) составляла 409 ± 15 уд. в мин, при продолжительности сердечного цикла 0.14 ± 0.002 с, длительность интервала P-Q была в среднем 0.06 ± 0.003 , QRS -0.03 ± 0.001 и Q-T -0.08 ± 0.03 с, систолический показатель был равен 57 ± 2 %. Величина зубца P в I отведении была равна 0.18 ± 0.05 , во втором -0.6 ± 0.02 и в третьем -0.4 ± 0.1 мм. Высота зубца R в I отведении составляла 2.2 ± 0.3 , во втором -5.3 ± 0.3 и в третьем -2.9 ± 0.3 мм. Величина зубца рав-

нялась S в I отведении $0,45\pm0,03$; во II $-1,5\pm0,2$ и в III $-0,6\pm0,1$ мм. Высота зубца T была соответственно – равна $0,3\pm0,04$; $1,7\pm0,2$ и $1,0\pm1,0$ мм.

На 60-й день реадаптации здоровых крыс в условиях низкогорья (II группа) на ЭКГ наблюдалось удлинение интервала R-R до 0.17 ± 0.01 против исходного 0.14 ± 0.002 с. (P<0.05), в связи

с чем на 56 уд. в мин снизилась ЧСС. У большинства крыс нарушение процессов реполяризации характеризовалось смещением сегмента S-T вверх от изолинии с увеличением вольтажа зубца S, удлинением интервала желудочкового комплекса Q-T (P < 0.05), уменьшением величины зубца R во II отведении, на 2 мм.

Данные о концентрации алкоголя в крови Примечание: * – изменения достоверные по отношению к I группе; *+ – изменения достоверны, по отношению с III группой; Р <0,05

	Показатель RR		Интактные животные, n = 10	Реадаптированные животные, n = 5	Реадаптация + 60 дней алкого- лизации, n = 7	Реадаптация + 60 дней алко-голизации + милдронат, n = 10
Ī			0,14±0,002	0,17±0,01*	0,16±0,02	0,17±0,02
Ī	ЧСС		409±15	353±23*	383±40	389±44
Ī	PQ		0,06±0,003	0,06±0,01	0,06±0,005	0,06±0,01
Ī	QT		0,08±0,003	0,13±0,02*	0,10±0,06	0,14±0,01*
	QRS		0,03±0,001	0,02±0,001*	0,02±0,001*	0,03±0,001
	Систолический показатель		57±2	67±7*	67±8*	80±6*
Ī						
	P	I	0,18±0,05	0,2±0,1	0,3±0,1	0,05±0,02*
		II	0,6±0,02	0,9±0,2	1,1±0,1*	0,45±0,1
		III	0,4±0,1	0,3±0,15	1,5±0,5*	0,6±0,2
	R	I	2,2±0,3	1,8±0,1	1,3±0,3*	0,65±0,2*
		II	5,3±0,3	3±0,2*	3,6±0,6*	4±0,5*
		III	2,9±0,3	2,3±0,4	4,1±0,08*	3±0,6
	Т	I	0,3±0,04	0,5±0,1	0,5±0,2	0,3±0,2
		II	1,7±0,2	1,7±0,2	2,1±0,3*	2,3±0,2
		III	1,0±0,1	0,9±0,1	2,7±0,05*	1,7±0,2*
	S	I	0,45±0,03	0,7±0,4	0,3±0,1	0,6±0,2
		II	1,5±0,2	2,2±0,2*	1,9±0,7	3,2±0,7*
		III	0,6±0,1	1,2±0,9	1,4±0,4*	2,2±0,5*

Примечание: * – изменения достоверны по отношению к І группе.

У III группы крыс, получавших алкоголь в течение 60 дней на фоне реадаптации, интервал Q-Т оставался удлиненным на две сотых секунды. Увеличился вольтаж зубца Р в I и III, а зубца R — во всех отведениях. Был значительно смещен сегмент S-Т вверх от изолинии с выраженным вольтажом зубца S. Возрос вольтаж зубца Т, который стал двугорбым во II—III отведениях.

На 60-й день дачи алкоголя и применении для лечения милдроната наблюдалось увеличение электрической систолы желудочков на 0,06 с. (P < 0,001), при увеличении систолического показателя до 80 ± 6 %, (P < 0,01). Величина зубца R уменьшилась в I и II отведениях, а вольтаж зубца T увеличился во II и III отведениях. Резко возросла величина зубца S (почти в четыре раза) в III отведении.

Таким образом в группе животных, получавших милдронат на фоне алкоголизации, в отличие от животных, получавших только алкоголь, наблюдалась нормализация величины зубца Т во всех отведениях и это вероятно связано с тем, что милдронат, улучшая метаболический процесс, оказал кардиопротекторное действие.

Литература

- 1. *Грудцин Г.В.* Поражение сердца у больных хроническим алкоголизмом: автореф. дис. ... д-ра мед. наук. М., 1989. 46 с.
- 2. *Нужный В.П.* Моделирование алкогольного поражения сердца: прогресс и противоречия // Пат. физиол. и экспер. тер. 1991. № 5. С. 58–60.
- 3. *Артемчук А.Ф.* Распространенность сердечнососудистой патологии у больных алкоголизмом. М.: Медицина, 1999. С. 289–295.
- 4. Яковченко В.А., Грудцин Г.В., Игнатьев А.Ю. Поражение сердца у больных алкоголизмом //

- Журн. неврологии и психиатрии им. С. Корсакова. 1997. № 9. С. 68–71.
- Альтиулер В.Б. Клиника алкоголизма: Руководство по наркологии. М.: Медпрактика, 2002. С. 203–232.
- Скворцов Ю.И. Поражение сердца при алкоголизме // Российский медицинский журнал. 2000. № 5. С. 41–43.
- 7. *Жулина Н.И*. Корректоры метаболизма в кардиологии // Науч.-практ. конф., посв. клинич. асп. кардиологии. Н. Новгород, 2004. С. 3–5.
- Калвиньеш И.Я. Метаболизм миокарда и ишемия // Метаболическая терапия и применение милдроната в клинической практике: Матер. I междун. науч.-практ. конф. Ялта: Grindex, 2003. С. 24–25.
- Амосова Е. Развитие концепции метаболической терапии // Современные подходы к фармакологической коррекции ишемических повреждений миокарда и головного мозга: Матер. науч.-практ. конф. Киев, 2010. С. 19–20.
- Шабанов П.Д., Лебедев А.А., Русановский В.В. и др. Модуляция пептидами самостимуляции латерального гипоталамуса у крыс при хронической алкоголизации // Экспериментальная наркология. 2006. № 3. С. 36–41.
- Бардина Л.Р., Сатановская В.И. Метаболическая адаптация к алкоголю у крыс, различающихся по предпочтению этанола воде // Украин. биох. журн. 1998. № 1. С. 94–99.
- 12. Акимов П.А., Орбиданс А.Г.. Терехин Г.А., Терехина Н.А. Влияние острой алкогольной интоксикации на содержание гликогена в печени и скелетных мышцах // Пат. физиол. и экспер. тер. 2010. № 2. С. 15–17.
- 13. *Боровиков В.П.* Statistica[®]. Статистический анализ и обработка данных в среде Windows_® / В.П. Боровиков, И.П. Боровиков. М., 1998. 592 с.