УДК 624.042.6: 539.371 (575.2) (04)

ОСОБЕННОСТИ ПЕРЕМЕЩЕНИЯ СРЕДНЕЙ ЗОНЫ СЕЧЕНИЯ ПРИ УПРУГОПЛАСТИЧЕСКОМ ИЗГИБЕ

А.М. Токтосунов

Рассмотрены вопросы аналитического определения перемещений при изгибе конструкций из материалов с различной деформативностью на растяжение и сжатие, когда происходит разгрузка средней зоны сечения.

Ключевые слова: изгиб; упругопластичность; средняя зона; разгрузка; перемещение.

Экспериментальными и теоретическими исследованиями конструкций из материалов с различными нелинейными деформативными свойствами на растяжение и сжатие установлено [1-4], что при изгибе нейтральная ось сечения постепенно смещается от центра тяжести в сторону одной из граней, а в средней зоне продольные фибры после первоначального сжатия разгружаются. Это вызывает внутреннюю статистическую неопределимость сечения, так как напряженно-деформированное состояние необходимо определять не только в сжатой и растянутой зонах, но и в зоне разгрузки. Раскрыть статистическую неопределимость можно только на основе более совершенной, по сравнению с ныне существующей, расчетной модели деформирования сечения. Попытки разработать такую модель [1, 2, 4] пока не увенчались успехом.

Для совершенствования расчетной модели предварительно необходимо исследовать вопросы перемещения сечения со смещением нейтральной оси и разгрузкой фибр средней зоны. На рис.1 показан процесс такого перемещения при возрастающем значении изгибающего момента M_i (i=1,2,...,m) и геометрических допущениях о плоскости сечения и несжимаемости продольных фибр. Процесс имеет следующие особенности:

- 1) при действии момента M_i сечение поворачивается относительно начального положения на угол ϕ_i вокруг оси \bar{O}_i , а при его приращении на ΔM относительно i-го деформированного положения на угол $\Delta \phi_i$, вокруг оси C_i , более удаленной от центра тяжести;
- 2) оси поворотов \bar{O}_i и C_i являются нейтральными в соответствии с полными перемещениями u_i и его приращениями Δu_i . Перемещение фибры в уровне оси \bar{O}_i принимает нулевое значение по-

сле первоначального сжатия и затем полного погашения его перемещением разгрузки. Перемещение фибры в уровне оси C_i не равно нулю, а соответствует предельному перемещению сжатия \mathbf{u}_i , при достижении которого начинается разгрузка;

3) с увеличением момента M_i от нуля до конечного значения M_m оси \bar{O}_i и C_i постепенно смещаются от центра тяжести сечения в сторону одной из граней (для определенности направление смещений принято в сторону сжатой грани). Эти смещения относительно произвольной точки A равны (рис. 2 а, б):

$$r = u/\phi$$
, $\rho = \Delta u/\Delta \phi$, (1) где и и ϕ — соответственно, перемещение точки A и угол поворота сечения;

4) зона разгрузки OC_m зависит от величины изгибающего момента M_m и определяется положением оси C_m относительно центра тяжести сечения. Она состоит из двух участков (рис. 2 а, б). На первом участке $O\bar{O}_m$ сечение растягивается только после первоначального сжатия и затем полной разгрузки. На втором участке $\bar{O}_m C_m$ сечение после частичной разгрузки остается сжатым.

Бесконечно малому приращению изгибающего момента dM соответствует бесконечно малое приращение угла поворота dф. При увеличении момента ось C_i , центр мгновенного поворота сечения, постепенно смещаясь, опишет кривую OC_m (рис. 2 а). Сечение в каждом i-ом положении имеет с кривой только одну общую точку C_i и, следовательно, является её касательной. Такое перемещение сечения аналогично качению прямой без скольжения по кривой, которая в дифференциальной геометрии называется эволютой [5]. При качении сечения по эволюте произвольная точка A опишет криволинейную траекторию AA (рис. 2 в), называемую эволь-

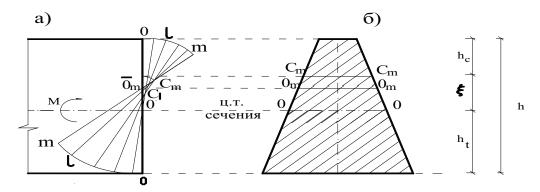


Рис. 1. Перемещение сечения при перегибе: а – схема перемещения; б – сечения.

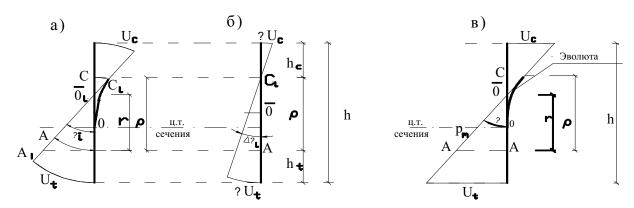


Рис. 2. Положение нейтральных осей: а – полных перемещений; б – приращения перемещений; в – расчетная схема.

вентой [5]. Эволюта образуется перемещением центров кривизны эвольвенты. Поэтому, расстояние р от точки касания сечения с эволютой до точки А равно радиусу кривизны эвольвенты этой точки, вычисляемому по второй формуле из (1). При переходе к дифференцированию она примет вид

$$\rho = \frac{du}{d\phi}.\tag{2}$$

По свойству эволюты и эвольвенты радиус кривизны ρ точки A отличается от дуги эволюты OC_m на постоянную, равную расстоянию от этой точки до центра тяжести сечения. Следовательно, высота зоны разгрузки равна радиусу кривизны эвольвенты, описываемой точкой A, расположенной в центре тяжести сечения.

Перемещение точки А можно определить как по уравнению эвольвенты, описывающей траекторию движения этой точки при увеличении момента, так и по первой формуле из (1):

$$\mathbf{u} = r \, \mathbf{\varphi}. \tag{3}$$

При малых значениях угла (ϕ =tg ϕ) это уравнение можно записать в виде

$$u = r tg \varphi$$
.

Но r tg ϕ — это отрезок прямой AA_1 (рис. 2 а), расположенный нормально к начальному положению сечения. Поэтому, при малых углах ϕ , вместо схемы рис. 2 а можно применять схему, показанную на рис. 2 в. Она отличается от общепринятой схемы упругого расчета наличием эволюты, которая представляет кривую разгрузки средней зоны сечения.

В соответствии с принятой расчетной схемой, перемещение и точки А определяется через перемещение точки касания сечения с эволютой (рис. 2 в)

$$u = \rho \varphi - u_{m}. \tag{4}$$

При известном уравнении эволюты угол поворота сечения

$$\varphi = \operatorname{tg} \varphi = \frac{\operatorname{du_m}}{\operatorname{dp}},\tag{5}$$

тогда уравнение (4) запишется в виде

$$\mathbf{u} = \rho \frac{d\mathbf{u}_{m}}{dl} - \mathbf{u}_{m}. \tag{6}$$

Перемещение точки $u_{\scriptscriptstyle m}$ сечение касается эволюты и определяется из (4) через перемещение и точки A

$$u_{m} = \varphi l - u,$$

или с учетом (3)

$$\mathbf{u}_{\mathrm{m}} = \varphi \frac{du}{d\phi} - \mathbf{u}_{\mathrm{.}} \tag{7}$$

Производная (5) по ρ равна кривизне эволюты

$$K = \frac{d\phi}{dp} = \frac{d^2 u_m}{dp^2},\tag{8}$$

а производная (2) по ф равна радиусу кривизны эволюты

$$R = \frac{dp}{d\phi} = \frac{d^2u}{d\phi^2}.$$
 (9)

Из (8) и (9) следует

$$\frac{d^2 u_m}{dl^2} = \frac{1}{\frac{d^2 u}{d\Phi^2}}.$$
 (10)

Уравнения (2), (5), (6), (7) и (10) представляют формулы преобразования Лежандра [7], позволяющие переменные эволюты um, ρ , $\frac{du_m}{d\rho}$,

$$\dfrac{d^2u_{_m}}{dp^2}$$
 определять через переменные эвольвенты u , ϕ , $\dfrac{du}{d\phi}$, $\dfrac{d^2u}{d\phi^2}$ и наоборот.

На основании изложенного можно заключить следующее. Перемещение сечения при изгибе конструкций из материалов с различными упругопластическими свойствами при растяжении и сжатии необходимо рассматривать не как простой поворот относительно смещающейся нейтральной оси О, а как процесс качения его по эволюте, представляющий кривую разгрузки средней зоны сечения. При этом эвольвенты этой эволюты определяют траекторию перемещения точек сжатой и растянутой зон. Предлагаемая расчетная схема позволяет переменные эволюты определять через переменные эвольвенты и наоборот по формулам преобразования Лежандра.

Литература

- 1. *Амбарцумян С.А.* Разномодульная теория упругости. М., 1988. 317 с.
- 2. *Воронок И.С.* О положении осей вращения сечения в изгибаемых элементах. Строительные конструкции. Киев, 1978. С. 18–23.
- 3. *Лукаш П.А.* Основы нелинейной строительной механики. М., 1978. С. 62–85.
- 4. *Мурашев В.И.* Трещиностойкость, жесткость и прочность железобетона. М., 1950. 128 с.
- 5. *Фихтенгольц Г.М.* Курс дифференциального и интегрального исчисления // Наука, М.; 1969. Т. 1. С. 578–586.