УДК 69.04

ПОВЕРОЧНЫЕ РАСЧЕТЫ И ОЦЕНКА НЕСУЩЕЙ СПОСОБНОСТИ ЭКСПЛУАТИРУЕМЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С ДЕФЕКТАМИ И ПОВРЕЖДЕНИЯМИ

Г. Дж. Адыракаева

Показаны отличительные особенности расчетов несущих железобетонных конструкций здания при наличии дефектов и повреждений конструкций.

Ключевые слова: железобетонные конструкции; поверочный расчет; дефекты; повреждения; оценка несущей способности.

PERFORM CHECKING CALCULATIONS AND EVALUATION OF THE BEARING CAPACITY OF REINFORCED CONCRETE STRUCTURES OPERATED WITH DEFECTS AND DAMAGES

G.Dzh. Adyrakaeva

The work considers the distinctive features of perform checking calculations and evaluation of the bearing capacity of reinforced concrete structures operated with defects and damages.

Keywords: reinforced concrete; checking calculation; defects; damages and evaluation of the bearing capacity.

При перепланировке помещений посредством устройства новых дверных или оконных проемов, удаления локальных участков стен, устройства отверстий в перекрытиях в соответствии с требованием действующих норм, а также при увеличении нагрузки на перекрытие, как правило, выполняется поверочный расчет несущих конструкций здания.

Основным назначением поверочного расчета является оценка перегрузки несущих элементов, возникающая вследствие конструктивных изменений. В зависимости от подгруппы здания, при оценке сейсмостойкости здания и оценке несущей способности его несущих конструкций и выполненных конструктивных изменений во время эксплуатации выполняют поверочный или полный расчет.

Предварительное обследование согласно требованиям СНиП [1, 2] включает визуальный осмотр здания и сбор следующих данных:

- > время возведения здания;
- конструктивную схему здания;
- наличие повреждений, оценку физического износа и ориентировочное определение их влияния на сейсмостойкость здания;
- проектную документацию и материалы изысканий;

- информацию о реконструкции здания с изменением конструктивной схемы несущих конструкций, нагрузок или функционального назначения в процессе эксплуатации;
- состояние инженерных коммуникаций.

Фактическое конструктивное решение основных несущих железобетонных конструкций должно учитываться в поверочных расчетах. Поверочные расчеты существующих строительных конструкций и расчеты усиленных конструкций следует выполнять с учетом данных детального обследования:

- фактическое конструктивное решение основных несущих элементов;
- прочностные характеристики материалов несущих конструкций;
- степень и причины повреждений и дефектов зданий;
- деформации элементов (прогибы, наклоны, сдвиги, осадку и др.);
- фактические нагрузки;
- > состояние инженерных коммуникаций;
- > процент износа конструкций.

На основании данных детального обследования принимаются геометрические размеры сече-

ний, учитываются дефекты и повреждения, уточняются расчетные нагрузки. Учет дефектов и повреждений производится путем уменьшения вводимой в расчет площади сечения бетона или арматуры. Необходимо учитывать влияние дефектов или повреждений на эксцентриситет продольной силы, сцепление арматуры с бетоном.

Отличительные особенности расчетов несущих конструкций здания при перепрофилировании помещений зданий существующей застройки вызваны наличием дефектов и повреждений конструкций. Как в поверочном, так и в полном расчете принимаются фактические нагрузки, геометрические размеры сечений элементов, армирование, характеристики материалов, полученные на основании результатов обследования, при этом обязательно учитываются дефекты и повреждения.

При выполнении расчетов должны быть проверены сечения элементов, имеющие дефекты и повреждения, а также сечения, в которых при обследовании выявлены зоны бетона, прочность которых меньше проектной на 20 % и более.

При наличии в конструкции наружных слоев с пониженной прочностью бетона (на глубину, превышающую величину защитного слоя) в расчете несущей способности и деформативности допускается принимать либо полное сечение элемента с единой пониженной прочностью в пределах всего сечения, либо уменьшенные размеры (за вычетом слоев с пониженной прочностью) с фактической прочностью оставшегося сечения. При этом во всех случаях принимаемая в расчет фактическая прочность бетона — она не должна быть меньше 10 МПа. Слои бетона с меньшей прочностью в расчете не учитываются.

При назначении прочностных и деформативных характеристик материала строительных конструкций для проведения расчетов используют фактическую прочность бетона и арматуры с учетом их совместной работы, которую характеризует состояние конструкций: величина прогибов, ширина раскрытия трещин и характер трещин, место расположения и характер тех или иных дефектов, полученных в результате обследования, нормы, действующие на время возведения здания и нормы, действующие на момент проведения обследования.

Важным показателем состояния железобетонной конструкции является фактическая величина прочности бетона, ее соответствие проектной прочности. Чаще всего прочность бетона определяется в некоторых характерных местах на поверхности конструкции в процессе детального обследования конструкций различными неразрушающими методами. К прочности бетона, определенной по результатам обследования, вводится коэффициент 0.8 для тяжелого, мелкозернистого и легкого бетонов и 0.7 – для ячеистого бетона.

При выполнении поверочных расчетов по проектным материалам в том случае, если в проекте существующей конструкции нормируемой характеристикой бетона является его марка, значение условного класса бетона по прочности на сжатие принимается равным 80 %-ной кубиковой прочности бетона, соответствующей марке по прочности для тяжелого, мелкозернистого и легкого бетонов и 70 %-ной – для ячеистого бетона.

Расчетные сопротивления арматуры следует принимать в соответствии с п. 6.17-6.21 СНиП 2.03.01—84*. Расчетные характеристики арматуры определяются в зависимости от класса арматурной стали, рассчитываемой конструкции в соответствии с разделом 2 [3]. При выполнении поверочных расчетов по проектным данным существующих конструкций, запроектированных по ранее действующим нормативным документам, нормативные сопротивления арматуры определяются в соответствии с разделом 2 [3].

Если в результате поверочных расчетов по оценке несущей способности, трещиностойкости и деформативности полученные значения удовлетворяют требованиям норм [3], конструкция считается пригодной к дальнейшей эксплуатации. В противном случае необходимо выполнять ремонтновосстановительные работы.

Литература

- 1. СНиП 31.01–2001 Перепрофилирование жилых зданий существующей застройки. Бишкек, 2001. 44 с.
- СНиП 22.01–98 КР Оценка сейсмостойкости. Бишкек. 1998. 25 с.
- СНиП 2.03.01–84* Бетонные и железобетонные конструкции. М.: ЦИТП Госстроя СССР, 1990. 77 с.