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CPABHUTE/IbHBIE PACYETBI JMHAMMUYECKNX XAPAKTEPMCTVK ITJTA3MbI
C MICITO/Tb30BAHUEM PA3TMYHBIX MOOETEN MUNEKTPUYECKON OYHKITUN

A.B. Amux6aesa, A. Ackapynvi, /1.10. [ly6osues

[MpoBeneH CpaBHUTENbHbLIN aHanM3 JNEKTPOOUHAMUYECKUX XapaKTEPUCTUK MOLENMbHOW [BYXKOMMOHEHTHOW BOOO-
poaHON nnasMbl, Kak B paMkax MOMEHTHOrO HenepTypbaTMBHOrO MOAXoAa, Tak U C MCMofb3oBaHWEM hopmanusma
ananekTpudeckon dyHkuum (OP) MepmuHa. ViccnenoBaHbl AMHaAMUYeckue CTpykTypHble daktopbl (AC®P), aucnepcus
1 Aauccrnaums NnasMeHHbIX BOMH, pacrnpoCcTpaHsoWwmxces B nnasme. MonyyeHHble B MOMEHTHOM NPUBMMKEeHUN pesyrb-
TaTbl MOKa3bIBAKOT XOPOLLEEe KONMMYECTBEHHOE U Ka4eCTBEHHOE cornacue ¢ AaHHbIMU MOAENMPOBAHNS MOMEKYNSPHON
OVHaMUKK, B oTnnyme oT mogdenv MepmuHa.

Knrouesble criosa: [BYXKOMMOHEHTHasi nNnasva; MeToh MOMEHTOB; AWHaMU4eckas 4acToTa CTONKHOBEHMS;
AnanekTpuyeckasi NPOHMLLAEMOCTb; ANHAMUYECKUIA CTPYKTYPHBIV hakTop.

OUSNTEKTPIVIK GYHKIIVISIHBIH AP TYPOYY MOJE/JIIEPVH KOJITOHYY
MEHEH II/TA3SMAHBIH TVTHAMUKAJIBIK MYHO3IOMOJIOPYHYH CAJIBIIITBIPMA SCEBU

A.b. Awmux6aesa, A. Ackapynvi, JI.10. [Iy6o6ues

Byn Makanaga MoOAEnAyy 9KM KOMMOHEHTTYY CyyTeK  MrasmacbiHblH 3MeKTPOAMHaAMUKanNbIK  MYyHO346OMeCYHe
nepTypbaT1BAYY 3MEC y4yp bIKMACbIHbIH ankarbiHAa, OWoHAoW ane MepMUHAWMH ANanekTPAUK (hYHKUMSCHIHBIH (hop-
MangyynyryH naiganaHyy MEHeH canbiluTblpMa Tangoo xypryaynay. JuHamvkansik Ty3yMayk daktopriop, nnasmaga
Tapkasnyydy nnasma TofnkyHAapblHbIH AUCNEPCUSCHI XKaHa Anccunaumsacbl naunaeere anbiHabl. Bup yvyp xakbiHL0OA0H
anbiHraH Hatblibkanap MepMUHOMH MoZEenvHe kaparaHda MOMeKynspAblk AMHaMUKaHbIH MOAENAee MaarbiMaTTapbl
MEHEH canaTThblK XaHa CaHAbIK XaKLLbl LIaRKELLTUIMH KOPCoTTY.

TyliyHOyy ce3dep: 3KN KOMMOHEHTTYY Niasma; y4yp bIKMachl; KarbifbillyynapablH AMHAMUKaIbIK XbIWTbIrbl; AUANEKTP
LUK 6TKOPryYTYK; AMHaMUKanbIK TY3yMAYK hakTop.

COMPARATIVE CALCULATION OF DYNAMIC CHARA CTERISTICS
OF MODERATELY COUPLED PLASMAS USING DIFFERENT DIELECTRIC FUNCTION MODELS

A.B. Ashikbayeva, A. Askaruly, D.Yu. Dubovtsev

A comparative analysis of the electrodynamic characteristics of a model twocomponent hydrogen plasma is carried out,
both within the moment non-perturbative approach and using the Mermin dielectric function (DF) formalism. Dynamic
structural factors (DSFs), dispersion and dissipation of plasma waves propagating in a plasma have been studied. The
results obtained in the moment approximation show good quantitative agreement with the molecular-dynamics simula-
tion data.

Keywords: two-component plasmas; method of moments; dynamic collision frequency; dielectric permeability; dynamic
structure factor.

Introduction. Dense plasmas are found in vari-
ous astrophysical objects (white dwarfs, neutron
stars) [1], and in several experimental facilities
(electrolytes, colloidal systems, dusty plasma, etc.)
[2, 3]. In this case, the potential energy of the inter-
particle interaction is usually greater than or equal

to the thermal energy of motion of the plasma par-
ticles. The dielectric properties of plasmas are usu-
ally investigated using both numerical simulations
and theoretical approaches using various interpar-
ticle interaction potentials. Numerical methods us-
ing the ab initio approach provide direct access to
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the investigation of collective processes described
by the dynamic structural factors [4, 5].

Advanced theoretical research methods include
the quasi-localized charge approximation method
(QLCA), which allows calculating the dispersion
of plasma waves, while the question of the dissipa-
tion of the latter remains open [6]. In a dense plasma
medium, when correlations between charged parti-
cles become significant compared with the kinetic
characteristics of the particles, that is, when there
are no small parameters in the system, the question
arises about the quality of the applied dielectric
function (DF) models. In this paper, we compare
dielectric functions calculated using the moment
method [7] and the Mermin model [§].

In [7, 9], a theoretical approach was proposed
based on the nonperturbative method of moments
[10], the basic relations of which satisfy the sum
rules and other exact relations. Knowledge of the
moments of the sought functions and static charac-
teristics allows us to find and investigate the dynam-
ic properties of a dense plasma. In accordance with
the results of [11], the method of moments used
in the present work does not require preliminary
knowledge of the experimental or simulation data
under study and allows us to find a parametric func-
tion that is used for calculations within the method
of moments from certain physical considerations.

By calculating the dynamic structure factor
(DSF) of a two-component nonideal plasma, using,
inter alia, the ideas developed in [11], it is possible
to compare them with available simulation data.
In the present work, we use both dynamic and stat-
ic models for the so-called Nevanlinna parameter
function, obtained in the framework of [12], which
turned out to be quite productive for calculating the
DSF in the two-component model. From the anal-
ysis of the obtained relations, it is easy to see that
the values obtained for the DPF are quite close to
the experimental results [4].

On the other hand, the analysis of dynamic re-
lations found within the framework of the formal-
ism of the Mermin dielectric function shows their
significant difference from both experimental re-
sults and in the values of the moments calculated
in the framework of the method, which was noted
earlier in [9].

Plasma parameters. In this paper, we study
a two-component fully ionized hydrogen plasma,

which is described by the dimensionless parameters
of nonideality, density, and degeneracy:
2
r_pfe b= 1 a

5 }’;Z—

2/3
0= 1 _ 2(i) I
BE. Or) T
The Wigner-Seitz radius a=3/3/4zn, is in-
troduced here along the elementary charge e, the
Boltzmann constant k,, temperature 7, number den-
sity of particles n (we presume that the densities of
electrons and ions coincide, n, = n), the Bohr radius
a,, and the system Fermi energy E,.
In this work we use the Deutsch interaction po-
tential is used, which takes into account the quan-
tum-mechanical effect of diffraction,

P [ R
ab

Here e, e, are the charges of particles of the
species a and b, respectively, 4, :h/ 7ok, T be-

ing the distance between them, A4, = h/ kT

is the de Broglie wavelength, 7 is the Planck con-
mamb

stant, and L, = is the reduced mass.

m,+m,

Method of moments. The method of moments
allows one to determine the dielectric properties of
the Coulomb system using the first few power fre-
quency moments of the loss function L(k,®),

C (k) =% T o' Lk, w)do, @)

which are the so-called sum rules [9]. They can be
calculated independently, knowing the interparticle
interaction potential and the partial static structural
factors. The latter in turn can be found, for exam-
ple from the solution of the Ornstein-Zernike equa-
tion in the hyper-netted chain approximation [13].
By definition, the loss function is related to the die-
lectric function as follows:

L(k,a)) = _M.

3)

The inverse (longitudinal) dielectric function
obtained in the framework of the method of mo-
ments, see [7], can be written as
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k
Sfl(k,a))ZI CO(Q( )+ o) (4)
o(@” a3 (k) + O(k) (@ — o (k)
where @] (k) =C,(k)/C,(k), @;(k)=C,(k)/C,(k)
and the Nevanlinna parameter function (NPF) can
be defined, in the static approximation, as in [11]:
i (k)
O(k) =—=—2—=. 5
7 o) ®
The moments C, (k) are defined explicitly as

C, (k)—kDe (225, (k) + 228, (k)-2Z,S,, (k) ,

e “ee i ~ii i~el

kpe =4rn.e’p (6)
C2 = a)[z7 , (7)
C, =0, (§ () +K(k)+U(k)+H) (8)
where ) )
k=L (LA
, 2m) o,’
f Zng (k)¢ (k)dk
8¢..(q)
Uk)=16, j 4 (S (@)~ 1>(Zee(k q) == jd,
de(k,q)=qf§eg(p)(q2—k2— ) Pp
ok gk’ p

Here $.,(q) is the formfactor of the interaction

4”_262 ;ab (q) s
a@=6u@ . (12)=3-2_F,,(n) is the averaged
mp

potential Fourier transform, @, (g)=

electron thermal velocity squared, m is the electron
mass, @, is the system plasma frequency, and F is
the Fermi integral, which is defined as
o
£ _Jexp(x—n)+1dx’
n = pu being the dimensionless chemical po-
tential defined by the normalization condition:

2
F,(m) = 56 2,

Alternative dynamic NPF model. In addition
to (5), we can use the dynamic NPF corresponding
to the DF asymptotic form of Perel’ and Eliashberg
[14],

\/5 7;3/4\/5(14_1-)
3 Wik~ (k) > ©)

O, (k,w) =

it was employed in the article [12] to reproduce
the simulation data of [4].

Mermin’s dielectric model. On the other hand,
in ideal plasmas the random-phase approximation
(RPA), can de used with the electronic dielectric
function determined as in [15]:

Erpa (b, 0) = £, (k, 0) +ig,(k, )
where the real part is written as

e (k,w)=1+—— [g(u+z)—g(u—z)],

47 7k,
ydy |X+y|
exp(Dy 77)+1 |x y|

and the function g(x):j
0

and D=6".
The imaginary part of the RPA DF is defined

explicitly as
1 1+exp(D[1—(u—z)2])
& (k,0)=———0In .
82k, 1+exp(D[1—(u+z)2])

The following traditional notations are in-
troduced here: u=w/kv, and z=k2k,, Uz,
k, stand for the Fermi velocity and wavenumber,
v,=k, k= GBz*m)"?.

The collisionless one-component (usually elec-
tronic) dielectric permeability of Lindhard [16] was
summarized by Mermin [8] and then by Das [17],
who used an alternative method of variation of the
distribution function to take into account collisions
of charged particles:

(@+iv)[egpy(k,0+iv)—1]
O+ iV [y (k,0+iv) =1]/[ €4y, (k,0)~1]

V:z\/ﬁ_e A (11)
(k;T)

is the static collision frequency. To find it, it is
necessary to know the generalized Coulomb loga-
rithm, which can be determined in terms of the par-
tial static structural factors S, (k) (a, b define the
species of the charged particles) using the Green —
Kubo formula [13]:

f dk S, (k)S, (k)= SZ.(k)
A+k*22)

If in (10) instead of the constant collision fre-
quency we use the so-called dynamic collision fre-
quency (DCF), then the range of applicability of
this expression expands and it can be used in dense
non-ideal plasma, as it was done in the generalized

ek, 0)=1+ .(10)

Here
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S(k,w)/S(k,wmax)

0.5 1.0 1.5 2.0
wlw,

Fig. 1. The normalized dynamic structure
factor “charge-charge”
for T=1, r, =1, ka=0.7795

Drude-Lorentz model for the two-component plas-
ma (TCP) inverse dielectric function of [18].

In this paper, the DCF is calculated in the first
Born approximation in terms of the ion-ion static
structural factor [19]:

n

. o
@)= —— [4 Vi (@)S, ()=~
6z m,;

(q’a.))_fRPA.e(qJO)dq‘ (12)
@

P
Here, n, is the number density of ions and is the
electron mass,

Vilg)=-

4re?

qZERPA (qi 0)
is the Fourier transform of the electron-ion interac-
tion potential statically screened by the electrons.
Dynamic structure factor. According to the
fluctuation-dissipation theorem, we can write the
following expression for the “charge-charge” dy-
namic structure factor:
S(k,(())ZM, (13)
mpp(k)B(Sho)
where @(k)=4re’ /k*, and the Bose factor
B(x) =(1—exp(—x))/ x is always positive.
Substituting into (13) the expressions for
the dielectric function obtained by the method of
moments (4) or the Mermin dielectric function (10),
we obtain the DSF S (k, w). The results are present-
ed in Figures 1-3 in comparison with the simulation
results of [4]. Precisely, the continuous lines were
obtained by the method of moments with the static
NPF (5), the black circles correspond to the method

0.6

S(k,w)/S(k,wmax)

0.2

0.0

Fig. 2. As in Fig. 1 but for
'=2,r=2, ka=0.7795

of moments but with the dynamic NPF (9), the blue
squares stand for the simulation results of [4], the
dash-dotted line was obtained with the Mermin DF
with the dynamic collision frequency (12), while
the dashed line displays the results found within the
Mermin model but with the static collision frequen-
cy (11).

As it can be seen from the displayed results,
our calculations of the dynamic structure factor
using the method of moments with both static and
dynamic models for the Nevanlinna parameter
function, (5) or (9), respectively, have led to a good
agreement with available simulation data of [4].

1.0

0.8

0.6

S(k,w)/S(k,wmax)

.

0.2

-~
et mn

&
%o

0.0

Fig. 3. As in Fig. 1 but for
'=2,r=05, ka=0.3898.
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Fig. 4. The plasma waves dispersion.
The types of the lines are as in Fig. 1.
Triangles were obtained from the DSF data of [4]

On the other hand, the DSF calculations in the
framework of the Mermin model either with the
static or dynamic collision frequencies produced
disagreement with the simulation data, specifically,
with respect to the positions of the DSF maxima.
We conclude that the method of moments, at least,
for the above conditions, reproduces the data of nu-
merical experiments better than the Mermin model.

Dispersion and decay of the plasma waves.
The dispersion equation for the (longitudinal) plas-
ma waves in a plasma medium can be written as:

ek,w)=0. (14)

The roots of this equation (14) are complex,
say, equal to z = w + id, the real part of which rep-
resents the dispersion of the plasma waves, and the
imaginary part indicates their dissipation.

When the decrement of the waves is relative-
ly small, the dynamic structure factor allows deter-
mining the dispersion and dissipation of the plasma
waves: from the positions of the DSF peaks on the
frequency axis with fixed wavenumbers it is easy to
determine the dispersion of the waves, and the half-
width of the dynamic structure factor at half-height
is proportional to the decrement of these waves.

Thus, based on the simulation data of [4], the
above characteristics were determined and com-
pared to the dispersion and decrement of the plasma
waves found from the dispersion equation (14) us-
ing dielectric functions found by the method of mo-
ments (4) and the model proposed by Mermin (10).

-0.05

-0.10

-0.15

olw,

-0.20

=0.25

-0.30

0.0 02 04 0.6 0.8
ka

Fig. 5. The decrement of the plasma waves,
notations are as in Fig. 4, I'=1, r, =1.

The graphs presented in Figures 4 and 5 con-
firm that the results of the method of moments are
in better agreement with the simulation data, than
those found using the Mermin model.

The sum rules. This can also be verified by
calculating the sum rules studied in detail in [9]
for different models of the dielectric function. No-
tice that the second frequency moment of the loss
function (the f— sum rule) normalized to the plasma
frequency squared should be equal to unity, (7), and
the fourth frequency moment satisfies the exact re-
lation (8). The advantage of the moment method is
that the inverse dielectric function (4) satisfies all
convergent sum rules (6) — (8) automatically. The
results of calculation of the sum rules are provided
in Table 1, wherefrom it becomes clear that, as ex-
pected, the second sum rule (the second moment),
both in the Mermin model and the method of mo-
ments are satisfied, while the values of the zero and
the fourth moments obtained by the moment meth-
od and the Mermin model (8) do not coincide.

One of the important conditions for the loss
function (3) stemming from different models of the
dielectric function is compliance with the Cauchy-
Schwarz inequality [7], which can be represented in
terms of frequency moments as follows [20],

b(k) = w, (k) -, (k) >0. (15)
The function (15) is plotted in Figure 6 for the
plasma parameters I'=1, r, =1.
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Table 1 — The loss function power moments

¢ moments 2 4 The fourth moment
Plasma parameters DF o G/, G/, contributions (8)

el Mermin’s DF 0,8878 1 2,269 £.=0837
e DF, moments K_: 0,835

ka =0.7795 method 0,9997 1 1,855 U=-0,001
H=0,184

Mermin’s DF 0,9420 1 1,988 o =0.,837
r=2r =2, K=0418

ka =0.7795 U=-0,0005
DI, moments 1,0693 1 1,629 H=0375

[=2,r=05 |MerminsDF 0,9236 1 2,232 £ — 0837
ka =0.3898 DF, moments 1,2337 1 1,134 K=10,245

method U=-0,0001
H=0,051

ka

Fig. 6. Graphical analysis of the implementation
of the Cauchy-Schwartz condition (15)

The fulfillment of the inequality (15), see Fig.
6, shows that both models analyzed in the present
work, satisfy this important condition.

Conclusion. In this paper, using the method of
moments and the Mermin model, we have described
the dynamic structure factor, the dispersion and de-
cay of the plasma waves in comparison with the re-
sults of numerical experiments [4]. From the results,
which are reflected graphically (Figures 1-3, 4-5),
it follows that the results obtained within the meth-
od of moments agree much better with the experi-
mental ones than those obtained in the framework
of the Mermin model. Apparently, this is due to the
fact that Mermin DF does not satisfy the fourth sum
rule, as it was shown in [9] and in the Table above.

Nevertheless, it satisfies the Cauchy-Schwartz con-
dition and the f'— sum rule, which indicates its pos-
sible use in certain specific physical problems.
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