УДК 616.155.164

ФЕРРИТИН КАК ИНДИКАТОР БИОЛОГИЧЕСКОГО МОНИТОРИНГА СТАТУСА ЖЕЛЕЗА СРЕДИ ГРУПП ВЫСОКОГО РИСКА

А.Б. Салханова

Представлены результаты изучения статуса железа по уровню ферритина в сыворотке крови среди женщин репродуктивного возраста и детей до пяти лет. Отмечено, что анемия среди групп риска в Казахстане имеет преимущественно железодефицитную природу.

Ключевые слова: анемия; железодефицит; биологическиий мониторинг; женщины репродуктивного возраста; дети; ферритин.

FERRITIN AS INDICATOR OF BIOLOGICAL MONITORING OF IRON STATUS AMONG HIGH RISK GROUPS

A.B. Salkhanova

It is presented the results of studying of the iron status on the ferritin level in bloood serum among women of reproductive age and children under 5 years in all oblasts of Kazakhstan. It is noted that anemia among risk groups has the most common iron deficiency nature in Kazakhstan.

Key words: anemia; iron deficiency; biological monitoring; women of reproductive age; children; ferritin.

Анемия является одной из широко распространённых проблем в мире и отмечается как в промышленно развитых, так и развивающихся странах. Наиболее уязвимыми группами населения являются женщины репродуктивного возраста и дети. В связи с серьезностью последствий данная патология всегда привлекает большое внимание специалистов здравоохранения. Самой распространенной причиной развития анемии является дефицит биологически доступного железа, хотя известны и другие этиологические факторы анемии, в частности кровотечения, инфекции и инвазии, генетические нарушения или хронические заболевания [1–6].

Хотя распространенность анемии в Казахстане была высокой, до сих пор не был исследован статус железа у групп риска, за исключением сентинельных исследований, проведенных лишь на ограниченном контингенте детей и женщин [7]. До этого лишь предполагалось, что значительная доля анемии в республике обусловлена дефицитом железа.

В 2011 г. в Республике Казахстан был проведен биологический мониторинг дефицита микронутриентов, в том числе железа, среди индикаторных групп населения, целью которого является

повышение эффективности программ по профилактике дефицита микронутриентов.

Материалы и методы. Случайная выборка в каждой из 14 областей Казахстана и городах Астана и Алматы осуществлялась кластерным методом. Всего обследовано 64 кластера (по 4 кластера в каждой из 14 областей Казахстана и городах Астана и Алматы) по 22 женщины репродуктивного возраста и детей до 5-летнего возраста в каждом кластере, что составляет 1408 женщин и 1408 детей, всего 2816 человек. В каждой из 14 областей Казахстана и городах Астана и Алматы число обследуемых составляет 88 детей и 88 женщин, всего 176 человек.

Выборка осуществлялась с учетом участкового принципа в районах медицинского обслуживания детей в возрасте 6–59 месяцев. В каждой из 14 областей Казахстана в областном центре методом случайной выборки отбирались 2 детские поликлиники, в каждой поликлинике — один участок, на каждом участке — 22 ребенка в возрасте 6–59 месяцев и их матери. Если на участке проживало менее 70 детей до 5-летнего возраста, то отбирался каждый второй ребенок, а если более 70 детей — то каждый третий ребенок (первый ребенок отби-

рается методом случайной выборки). По такому же принципу отбирались дети (и их матери), прикрепленные к детской поликлинике (методом случайной выборки) в одном из районных центров, а также в одном сельском населенном пункте в данном районе.

В каждом из городов Астана и Алматы методом случайной выборки отбирались 4 детские поликлиники и в каждой поликлинике один участок и на каждом участке 22 ребенка в возрасте 6–59 месяцев и их матери.

Обследование проводилось после получения добровольного согласия отобранных женщин на участие в обследовании их самих и их детей в возрасте 6–59 месяцев на получение пробы крови в объеме 5 мл для проведения последующего анализа статуса железа в лабораторных условиях.

Оценка статуса железа в организме проведена при помощи измерения концентрации ферритина сыворотки крови. Содержание ферритина в сыворотке крови измерялось иммуноферментным методом. Контрольные образцы из BioRad были использованы для получения калибровочной кривой на каждой пластине. Сыворотка здорового человека использовалась в качестве эталона для контроля качества измерений, что позволяло следить за точностью измерений и погрешностью при измерениях. Использовались десять повторов образцов для контроля качества.

Ферритин является важным железосвязывающим протеином, и его главная функция — создание в организме запасов железа. Низкий уровень содержания ферритина сыворотки указывает на небольшие запасы железа в организме, в то время как

Таблица 1 – Средний уровень ферритина в сыворотке в крови детей в возрасте 6–59 месяцев, беременных и небеременных женщин 15–49 лет с СРБ ≤ 5 мг/л в Казахстане

Дети, женщины	n	Среднее (мкг/л)	СтО1	m2	95% ДИС3
Дети 6-59 месяцев:	1083	21,9	30,4	0,92	20,05-23,68
дети 6-23 месяца	280	21,9	35,7	2,13	17,70–26,10
дети 24-59 месяцев	803	21,9	28,4	1,00	19,89–23,82
Беременные женщины:	70	18,4	16,2	1,94	↓14,54–22,28ª
Неберемен. жен., 15-49 лет	1076	25,3	27,0	0,82	23,65–26,88
неберемен. жен., 15-29 лет	516	23,2	23,9	1,05	21,23–25,28
неберемен. жен., 30-49 лет	560	27,2	29.5	1,25	24,71-29,61

Примечание. Ст O^1 – Стандартное отклонение; m^2 – Стандартная ошибка средней, 95 % ДИС 3 – 95 % доверительный интервал средней. Статистически значимое изменение (P < 0.05; \uparrow – повышение, \downarrow – снижение) по сравнению с соответствующими данными y^a – небеременных женщин.

Таблица 2 – Распространенность низкого уровня ферритина при CPБ ≤ 5 мкг/л и анемии при низком уровне ферритина среди детей в возрасте 6–59 месяцев, беременных и небеременных женщин репродуктивного возраста в Казахстане

Дети, женщины	Низкий :	уровень ферритина	Анемия при низком уровне ферритина (ЖДА)		
	n	%	n	%	
Дети 6–59 месяцев, n = 1083:	413	$\downarrow 38,1 \pm 1,52^{a}$	215	$52,1 \pm 2,46$	
6-23 месяца, n = 280	130	146,4 ± 2,986	82	↑63,1 ± 4,23 ⁶	
24-59 месяцев, n = 803	283	$35,2 \pm 1,69$	133	↓47,0 ± 2,97в	
Беременные женщины, n = 70	44	↑62,9 ± 7,28 ^B	24	$54,5 \pm 7,51$	
Неберемен. жен., 15–49 лет, n = 1076:	471	$43,8 \pm 2,29$	269	57,1 ± 2,28	
неберемен. жен., 15–29 лет, n = 516	244	$47,3 \pm 3,20$	132	54,1 ± 3,19	
неберемен. жен., 30–49 лет, n = 560	227	$40,5 \pm 3,26$	137	$60,4 \pm 3,25$	

Примечание. Статистически значимое изменение (P < 0.05; \uparrow – повышение, \downarrow – снижение) по сравнению с соответствующими данными у: ^а – беременных и небеременных женщин в обеих возрастных группах; ⁶ – детей 24–59 месяцев; ^в – небеременных женщин 15–49 лет.

повышенное содержание железа распознаётся по увеличению концентрации ферритина сыворотки. Значения ниже 12 мкг/л у детей 6-59 месяцев и ниже 15 мкг/л у женщин 15-49 лет указывают на фактическое истощение запасов железа в организме, а уровни ферритина > 150 мкг/л у женщин свидетельствуют о тяжелом риске перегрузки организма железом [8]. Однако ферритин сыворотки является также острофазовым регулирующим протеином, концентрация которого увеличивается в ответ на инфекции в организме. Во избежание получения ложных отрицательных значений проводится также измерение концентрации С-реактивного белка (СРБ) в сыворотке крови. Если уровень СРБ в сыворотке крови был выше 5 мг/л, показатели содержания ферритина для оценки уровня концентрации железа не рассматривались. По данной причине не рассматривались уровни ферритина у 128 из обследованных женщин и 158 детей.

Результаты. Средний уровень ферритина в сыворотке в крови беременных женщин с СРБ ≤ 5 мг/л в Казахстане составил 18,4 мкг/л и был существенно ниже, чем у небеременных женщин 15—49 лет, у которых данный показатель был равен 25,3 мкг/л (таблица 1). При этом у небеременных женщин не выявлены возрастные различия в содержании ферритина в сыворотке крови. У детей 6—59 месяцев средний уровень ферритина в сыворотке с СРБ ≤ 5 мг/л составил 21,9 мкг/л, и при этом возрастные различия также не обнаружены.

Распространенность низкого уровня ферритина в сыворотке крови у беременных женщин с СРБ ≤ 5 мг/л составила 62,9 %, что существенно выше, чем у небеременных женщин (43,8 %) 15–49 лет (таблица 2). При этом у 54,5 % беременных и 57,1 % небеременных женщин с низким уровнем ферритина в крови выявлена анемия, которая была, соответственно, железодефицитной. У детей наблюдается аналогичная картина. Так, доля детей 6–59 месяцев с низким уровнем ферритина составила 38,1 и у 52,1 % детей с низким уровнем ферритина выявлена анемия.

У детей младшей возрастной группы (6–23 месяца) распространенность низкого уровня ферритина в крови (46,4%) и анемии при низком уровне ферритина (63,1%) была выше, чем у детей старшей возрастной группы (24–59 месяцев), у которых эти показатели составили 35,2 и 47%, соответственно.

Таким образом, можно считать, что анемия среди детей 6–59 месяцев и женщин 15–49 лет в Казахстане имеет преимущественно железодефицитную природу.

Литература

- International Nutritional Anemia Consultative Group (INACG). 1979. Iron deficiency in infancy and childhood. Geneva, Switzerland: World Health Organization.
- International Nutritional Anemia Consultative Group (INACG). 1989. Iron deficiency in women. Geneva, Switzerland: World Health Organization.
- 3. Iron Deficiency Anemia: Recommended Guidelines for the Prevention, Detection, and Management Among U.S. Children and Women of Childbearing Age. Institute of Medicine, ISBN: 0-309-58612-7, 140 pages, 6 × 9, (1993).
- 4. *Yip R*. 1994. Iron deficiency: Contemporary scientific issues and international programmatic approaches. Symposium: Clinical nutrition in developing countries. 1479S–1490S.
- Report of the 2004 International Nutritional Anemia Consultative Group Symposium: Iron Deficiency in Early Life: Challenges and Progress 18 November 2004, Lima, Peru.
- Nutritional Anemia. Edited by Klaus Kraemer Sight and Life Press, Basel, Switzerland, 2007, 414 p.
- Салханова А.Б. Осведомленность женщин сентинельных групп о фортифицированной пшеничной муке и ее использование на уровне домохозяйств / А.Б. Салханова // Поиск Ізденіс. Серия естественно-технических наук. 2010. № 2 (2). С. 90–94.
- Methods of assessing iron status. In: / Iron Deficiency Anemia. Assessment, Prevention and Control. A Guide for programme managers. UNICEF, UNU, WHO, 2001, p. 33–46.