УДК 550.34; 531/534; 627.8

О ВОЗДЕЙСТВИИ ЗЕМЛЕТРЯСЕНИЙ НА ТОКТОГУЛЬСКУЮ ПЛОТИНУ

В.И. Довгань

Приведены сведения об интенсивности воздействий на Токтогульскую плотину землетрясений, зарегистрированных цифровой системой сейсмометрических наблюдений.

Ключевые слова: плотина; землетрясения; сейсмический мониторинг; спектральный состав и интенсивность воздействий; собственные частоты.

ABOUT INFLUENCE OF EARTHQUAKES ON THE TOKTOGUL DAM

V.I. Dovgan

There are data on intensity of influences on the Toktogul dam of the earthquakes registered by digital system of seismometric supervision.

Key words: dam, earthquakes; seismic monitoring; spectral structure and intensity of influences; fundamental frequencies.

Вопрос о том, с какой силой воздействуют землетрясения на разные участки плотины, важен для прогноза критических ситуаций при сильном событии. Мы сделали попытку прикоснуться к этому сложному вопросу. Дело в том, что каждое землетрясение индивидуально – его воздействие на сооружение зависит не только от силы, но и от спектрального состава колебаний, резонансных явлений, эпицентрального расстояния, очаговых параметров (типа подвижки, направленности излучения). Для того чтобы вывести какую-то закономерность, необходима достаточно полная статистика. Сейсмические приборы, установленные в теле плотины и бортах в 2005 г., к настоящему моменту зарегистрировали около 300 землетрясений. В ближней для гидроузла зоне сильных событий за этот период не произошло - максимальные колебания наблюдались от двух местных толчков в июлеавгусте 2006 г. и составили 4 балла в основании плотины и порядка 6.5 баллов – на гребне. Землетрясения, зарегистрированные в пределах 160 км от плотины, не превышали 11-й энергетический класс. На плотине записались и более сильные события, но их эпицентры расположены на значительном, а значит, безопасном для нее расстоянии.

На рисунке 1 показана интенсивность воздействия на гидросооружение местного землетрясения 30 июля 2006 г. Интенсивность колебаний в данном случае изменялась от 5 до 6.5 баллов, увеличиваясь с высотой расположения точки (для получения детальной картины учитывались не принятые в сейсмологии десятые доли балла). Наибольшие колебания наблюдались в центре плотины, достигая максимума во второй точке.

На рисунке 1 (вверху справа) показано изменение максимальных амплитуд колебаний при переходе от опорной 10-й точки к 9-й в основании плотины и далее вверх по центру к бортам плотины и верхним точкам. При этом достаточно сильном землетрясении максимум амплитудного спектра в опорной десятой точке находился на частоте 1,3 Гц. Усиление амплитуд колебаний в верхних точках происходит на собственных частотах блоков, в которых эти точки расположены. Спектры колебаний при землетрясениях меньшей энергии еще более высокочастотны, поэтому при местных и близких толчках при переходе к 9-й точке, жестко связанной с массивным основанием плотины, амплитуды колебаний уменьшаются. В данном случае уменьшение амплитуд колебаний происходило и при переходе от основания к правому борту (точка 4). Для остальных точек наблюдался рост амплитуд колебаний с высотой: для правой стороны плотины (точка 1) в большей степени, для левой стороны (точка 3) - в меньшей степени. Максимальный рост амплитуд происходил в центральном блоке плотины (точки 6 и 2).

На рисунке 2 показано воздействие на плотину сильного удаленного гиндукушского землетрясения. При этом землетрясении приращение интенсивности колебаний во второй точке относи-

Рисунок 1 – Распределение интенсивности колебаний (в баллах) по телу плотины (вверху слева), цифрами показано положение точек наблюдений; изменение максимальных амплитуд колебаний в зависимости от расположения точки наблюдений (вверху справа) и спектры колебаний по записям местного землетрясения 30 июля 2006 г. (внизу)

тельно опорной происходило незначительно – на десятые доли балла. Спектры амплитуд колебаний на плотине более низкочастотны, чем при местных толчках (рисунок 2, внизу). В данном случае максимум спектра по записи в десятой точке находился на частоте 0,38 Гц.

На низкочастотные колебания сильнее реагирует и девятая точка в основании плотины – амплитуды колебаний в ней даже выше, чем в точках второго уровня – 5-й, 6-й, 7-й и в бортах плотины – 4-й и 8-й (рисунок 2, вверху справа). Далее происходит небольшой рост амплитуд в верхних точках с максимумом во второй.

Для всех зарегистрированных на плотине землетрясений, даже для тех, которые были замечены только приборами, есть информация о величине воздействия в баллах по шкале MSK-64 на каждую точку наблюдений. Большей частью это воздействие условно – менее одного балла. Из всего каталога записанных на плотине землетрясений отобрали только те, которые могли ощущаться хотя бы в верхних точках наблюдений: для близких событий энергетический класс не менее 9.5, эпицентральные расстояния для удаленных землетрясений не превышали 300 км. На основании полученных данных построили графики зависимостей приращения балльности в девяти точках от энергетического класса и эпицентрального расстояния относительно десятой опорной. Примеры таких графиков для трех верхних точек наблюдений приведены на рисунке 3. Для данного и всех последующих построений мы рассматривали записи на составляющей С-Ю (вдоль течения). Рассеяние данных на графиках обусловлено особенностями каждого конкретного землетрясения.

Вторая точка, расположенная в центре плотины на высоте 880 м, обладает наибольшей степенью свободы в направлении С-Ю – вдоль течения. Для нее наблюдается приращение интенсивности колебаний до двух баллов при несильных землетрясениях (K < 11) и эпицентральных расстояниях R < 160 км. Для боковых первой и третьей точек максимальное приращение составляет 1,5 балла. Наблюдается уменьшение интенсивности воздействия на верхние точки наблюдений с увеличением эпицентрального расстояния и энергетического класса. Для некоторых удаленных землетрясений приращения балльности с высотой вовсе не происходит.

Для точек второго уровня – пятой, шестой и седьмой при значительном рассеянии данных приращение балльности относительно опорной ниже, чем для трех верхних. Максимальное приращение интенсивности (до 0,5–0,8 балла) наблюдается для шестой точки в центре плотины.

Вестник КРСУ. 2014. Том 14. № 7

Рисунок 2 – Распределение интенсивности колебаний (в баллах) по телу плотины (вверху слева), изменение максимальных амплитуд колебаний в зависимости от расположения точки наблюдений (вверху справа) и спектры колебаний (внизу) по записям удаленного сильного землетрясения 26 мая 2013 г.

Для четвертой и восьмой точек в бортах плотины и для девятой точки в ее основании воздействие большей части высокочастотных местных и близких (до 150 км) землетрясений ниже или приближается к воздействию на опорную точку, т. е. происходит затухание сейсмических волн. Для более удаленных землетрясений заметно небольшое (на десятые доли балла) увеличение интенсивности в бортах по сравнению с десятой точкой.

На рисунке 4 показаны графики максимальных спектральных амплитуд колебаний в верхних точках относительно десятой опорной в зависимости от энергетического класса и эпицентрального расстояния. В качестве амплитуд колебаний были исполь-

Рисунок 3 – Графики зависимостей приращения балльности от энергетического класса (слева) и эпицентрального расстояния (справа) в трех верхних точках наблюдений относительно десятой опорной точки

Вестник КРСУ. 2014. Том 14. № 7

Рисунок 4 Графики зависимостей приращений резонансных амплитуд колебаний от энергетического класса (слева) и эпицентрального расстояния (справа) в трех верхних точках наблюдений относительно десятой опорной точки

зованы максимальные амплитуды в спектрах Фурье по записям землетрясений в точках наблюдений.

Изменение спектральных амплитуд колебаний в точках наблюдений по отношению к входному сигналу, так же как и балльности, имеет сложный характер. Рассеяние данных уменьшается с увеличением эпицентрального расстояния и энергетического класса и зависит от особенностей самого землетрясения. Для второй точки увеличение амплитуд колебаний в ближней зоне изменяется от 2-х до 7,7 раз по сравнению с десятой точкой. Для первой и третьей точек эти соотношения ниже – для некоторых землетрясений они приближаются к 4-м, для других увеличения амплитуд колебаний не происходит вообще.

На рисунке 5 показано отношение спектральных амплитуд колебаний во второй точке к амплитудам в десятой точке в зависимости от резонансной частоты входного сигнала: чем высокочастотнее землетрясение, тем сильнее (при прочих равных условиях – энергетического класса, эпицентрального расстояния и т. д.) относительное воздействие его на верхние точки.

Какие частоты являются собственными для разных частей плотины – частоты, на которых происходит резонансное усиление колебаний? Полагаем, что каждая точка наблюдений характеризует блок, в котором она расположена. Анализ спектров Фурье по записям рассмотренных землетрясений показал, что каждая точка наблюдений характеризуется определенным диапазоном частот, на которых происходит максимальное усиление колебаний входного сигнала. На рисунке 6 приведены соотношения частот, соответствующих максимумам в спектрах записей рассмотренных землетрясений в десятой опорной точке и в точках на плотине и бортах.

По составляющней С-Ю достаточно четко можно определить диапазон собственных частот для второй точки верхнего уровня (высота 880 м) в центре плотины. Для частот входного сигнала $f \ge 2,5$ Гц резонансные частоты изменяются в небольших пределах от 3,6 до 4,2 Гц. При более низкочастотном входном сигнале диапазон резонансных частот во второй точке за небольшим исключением изменяется в пределах от 3 до 4,6 Гц. Этот диапазон частот можно назвать собственным для второй точки.

Для первой точки верхнего уровня преобладают резонансные частоты в диапазоне от 3,4 до 4,2 Гц, но наблюдаются и более высокочастотные максимумы до 6–6,5 Гц. Для третьей точки этого уровня резонансные частоты изменяются в пределах от 3 до 5–6 Гц.

Рисунок 5 – График зависимости отношений спектральных амплитуд по записям во второй и десятой точках от резонансной частоты входного сигнала

Вестник КРСУ. 2014. Том 14. № 7

Рисунок 6 — Графики зависимостей резонансных частот по записям в девяти точках наблюдений от резонансной частоты входного сигнала (точка 10)

Второй уровень (высота 825 м): пятая точка имеет преобладающие резонансные частоты от 2,8 до 4 Гц, шестая точка в центре – от 3 до 4,1 Гц, седьмая – от 2,8 до 4 Гц.

Для 4-й и 8-й точек в бортах и для 9-й точки в основании плотины за небольшим исключением низкие резонансные частоты до 2 Гц близки к резонансным частотам входного сигнала. Для частот входного сигнала f 10 ≥ 2Гц резонансные частоты в этих трех точках изменяются в пределах от 1-1.5 до 3-3,7 Гц. В основном, низкочастотные максимумы в спектрах присущи сравнительно удаленным землетрясениям с эпицентральными расстояниями R > 200 км. Для остальных точек совпадение резонансных частот с резонансной частотой входного сигнала в диапазоне 0,5-1,0 Гц наблюдается для удаленных сильных событий. В большинстве случаев резонансная частота входного сигнала в десятой точке присутствует в спектрах по записям в других точках, не всегда являясь там резонансной.

Выводы. Величина сейсмических воздействий на гидроузел зависит от особенностей землетрясений – энергетического класса, эпицентрального расстояния, спектрального состава и т. д. Мы получили только некоторые предварительные результаты по этой проблеме, которые в дальнейшем будут дополняться и уточняться.

Близкие высокочастотные землетрясения воздействуют на отдельные блоки плотины, усиливая колебания в трёх верхних точках на высоте 880 м до 1.5–2-х баллов с максимумом во второй центральной. Для точек второго уровня – пятой, шестой и седьмой (высота 825 м) при значительном рассеянии данных приращение балльности относительно опорной десятой ниже, чем для трех верхних. Максимальное прирашение интенсивности (до 0,5-0,8 балла) наблюдается для шестой точки в центре плотины. Для четвертой и восьмой точек в бортах плотины и для девятой точки в ее основании воздействие большей части высокочастотных местных и близких (до 150 км) землетрясений ниже или приближается к воздействию на опорную точку. Для более удаленных землетрясений заметно небольшое (на десятые доли балла) увеличение интенсивности в бортах по сравнению с десятой точкой. Удаленные низкочастотные события воздействуют на плотину в целом, и изменение интенсивности колебаний в зависимости от положения точки наблюдений происходит незначительно.

Спектры колебаний входного сигнала трансформируются плотиной в зависимости от собственных частот отдельных блоков. Каждая точка наблюдений характеризуется определенным диапазоном частот, на которых происходит максимальное усиление колебаний входного сигнала.

Для точек с первой по седьмую в теле плотины преобладающие резонасные частоты находятся в диапазоне от 2,8 до 5 Гц. Для девятой точки, жестко связанной с основанием плотины, и для четвертой и восьмой в бортах диапазон резонансных частот смещен в низкочастотную область: 1–3,7 Гц.

В большинстве случаев резонансная частота входного сигнала в десятой точке присутствует в спектрах по записям в других точках, не всегда являясь там резонансной.