УДК 535.34

ТЕРАГЕРЦ-ИНФРАКРАСНЫЙ КОНВЕРТЕР

НА ОСНОВЕ МЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ: ПОТЕНЦИАЛ ПРИМЕНЕНИЯ

К.А. Молдосанов, В.М. Лелевкин, П.В. Козлов, А.К. Кавеев

(Оригинал опубликован на английском языке в Journal of Nanophotonics, vol. 6(1), 061716 (2012))

В терагерц (ТГц)-инфракрасном конвертере нового типа для визуализации источников ТГц-излучения в матрицу материала, прозрачного в ТГц-лучах, вводятся наночастицы. Наночастицы изготавливаются из металла или сплава, имеющего частично заполненный пик плотности состояний электронов на уровне Ферми. Конвертер предназначен для работы совместно с ТГц-объективом, формирующим изображение источника на матрице, в которой облучаемые наночастицы преобразуют ТГц-энергию в теплоту, двухмерное распределение которого регистрируется инфракрасной камерой. Наночастицы никеля приемлемы для высокочастотного ТГц-излучения и могут найти применение при пассивной визуализации биологических и медицинских объектов в реальном масштабе времени при комнатной температуре. А наночастицы из соединений с тяжелыми фермионами приемлемы для низкочастотного ТГц-излучения и могут найти применение для визуализации предметов, скрытых под одеждой человека.

Ключевые слова: ТГц-ИК-конвертер; ТГц-визуализация; пассивный имэйджер; радар с формированием изображения; наночастица.

1. Введение. Прогресс в терагерцевой (ТГц) оптике и появление инфракрасных (ИК) камер, формирующих изображение с температурной чувствительностью ~ 14 мК позволяют предложить простой способ визуализации источников ТГцизлучения. В этом способе ТГц-объектив формирует изображение источника на двухмерном ТГц-ИКконвертере. Конвертер представляет собой матрицу из материала, прозрачного в ТГц-лучах, с внедренными в нее наночастицами из металла или сплава с частично заполненным пиком плотности электронных состояний (ПЭС) на уровне Ферми. Наночастицы, нагреваемые ТГц-излучением, преобразуют энергию ТГц-квантов в теплоту, а двухмерная картина, формируемая нагретыми наночастицами конвертера, визуализируется ИК-камерой. Целью данного исследования было выяснение осуществимости схемы для пассивной визуализации предметов, скрытых под одеждой на теле человека (рисунок 1). Появление промышленных высокочувствительных (с температурной чувствительностью ~ 14-50 мК) ИК-камер [1], а также производство оптических элементов для ТГц-диапазона [2] позволило бы испытать такую схему в промышленном масштабе.

В предложенной схеме ТГц-объектив 2 формирует в ТГц-лучах изображение объекта-источника 1 на двухмерном конвертере 4, преобразующем ТГц-излучение в теплоту, т. е. в ИК-излучение. Изображение, сформированное конвертером 4 (уже в ИК-лучах), служит объектом для объектива ИКкамеры 5. Фильтр 3 служит для фильтрования теплового излучения объекта (с температурой $T \approx 300 K$ (рисунок 2); фильтруемые длины волн: $\lambda \sim 3-30$ мкм, с пиком излучения при $\lambda \approx 10 \text{ мкм}$).

В отличие от подхода, используемого группой Лууканена [3–5] для пассивной визуализации ТГцисточников, наш подход проще и не требует криостата, вакуумной системы, сложной оптической системы, электроники, интерфейсов для обработки информации и источников питания. В группе Кузнецова [6–8] используется ТГц-ИК-конвертер

Рисунок 1 – Схема визуализации источника ТГц-излучения: 1 – объект-источник ТГц-излучения, 2 – ТГц-объектив из полиэтилена марки HDPE [2], 3 – тепловой фильтр [2], 4 – матрица ТГц-ИК-конвертера, 5 – ИК-камера *Mirage P* [1]

с топологической системой резонаторов в виде разрезных колец. Его недостатком является эффект "кометного хвоста" и расплывание изображения, что ухудшает время отклика и пространственное разрешение конвертера. Ожидается, что предлагаемый нами ТГц-ИК-конвертер, благодаря использованию наночастиц, будет свободен от этих недостатков. Более того, оценки обещают другие преимущества перед конвертером группы Кузнецова: ТГц-мощность, требуемая для работы нашего конвертера, почти на порядок ниже, чем в их конвертере; площадь нашего ТГц-ИК-конвертера приблизительно в 3,5 раза больше.

2. ТГц-ИК-конвертер: оценки технических параметров. У наночастиц металла с уменьшением их размеров расстояние между энергетическими уровнями электронов увеличивается до энергий, типичных для энергий ТГц-квантов. Этот размерный эффект можно использовать для поглощения ТГц-излучения. Кроме того, в наночастицах, благодаря соотношению неопределенностей, неопределенность в импульсе фермиевских электронов превышает величину импульса Δp , которую требуется передать от фотона электрону, чтобы произошло их взаимодействие (импульса фотона *p*_{nh} недостаточно для фотон-электронного взаимодействия, так как $p_{ph} \leq \Delta p$). Таким образом, неопределенность в импульсе фермиевских электронов обеспечивает выполнение закона сохранения импульсов, а в конечном счете поглощение энергии фотона.

Если ввести соответствующее количество металлических наночастиц в матрицу, прозрачную в ТГц-лучах, ТГц-излучение будет способно нагреть наночастицы до порога чувствительности современных ИК-камер.

В качестве материала для наночастиц-конвертеров предпочтительно использовать переходной ме-

Рисунок 2 – Распределение излучения абсолютно черного тела при температуре 300 К. Мы приближенно аппроксимировали излучение тела человека этим распределением, умножив его на 0,5

талл с пиком ПЭС на уровне Ферми E_F . Как во всех металлах, из-за теплового возбуждения, часть электронных состояний ниже уровня Ферми, в интервале энергий от ($E_F - 0.5 \cdot kT$) (здесь k – постоянная Больцмана, $T \approx 300 \ K$, и $kT \approx 26 \ MB$) до E_F , становится незанятой: электроны переходят из этих состояний в состояния с энергиями выше уровня Ферми в полосе от E_F до ($E_F + 0.5 \cdot kT$). В результате электроны в полосе шириной kT в окрестности E_F становятся способными поглощать энергию фотонов, т.е. быть возбужденными на энергетические уровни выше исходного вплоть до верхнего края d-зоны. Будучи рассеянными, эти электроны возвращаются на незанятые уровни в полосе энергий шириной kT.

Выбор для наночастиц переходного металла с пиком ПЭС при E_F обещает выигрыш в числе электронов, способных поглощать фотоны. Кроме того, этот выбор обещает повышенную интенсивность рассеяния возбужденных электронов. Поэтому передача энергии от фотонов ионам металла будет более интенсивной, а наночастицы смогут нагреваться до более высокой температуры, чем в наночастицах обычного металла.

Наш подход основан на использовании наночастиц *Ni*. Распределение плотности состояний фононов в *Ni* при $T \approx 300 K$ (рисунок 3) хорошо сочетается с распределением излучательной способности абсолютно черного тела при $T \approx 300 K$ (см. рисунок 2), а именно: плотность состояний фононов максимальна или повышена именно в интервале энергий ~ 10–35 *мэB*, где вклад фотонов в общую излучательную способность ТГц-спектра максимален или велик (длины волн ~ 30–150 *мкм* или в энергетических единицах: ~ 10–40 *мэB*).

У *Ni* ширина 3*d*-зоны равна приблизительно 5,5 э*B*, причем часть 3*d*-зоны выше уровня Ферми (рисунок 4), что определяет интенсивное рас-

Рисунок 3 – Плотность состояний фононов в *Ni* при температуре *T* = 300 *K* (непрерывная линия, [9, 10]. Пунктирные линии – приближенное разложение кривой плотности состояний фононов на три компоненты

сеяние электронов в этом металле. По сравнению с другими металлами, *Ni* имеет максимальную ПЭС на уровне Ферми [11].

Ниже (п. 2.1) принято, что средний размер наночастиц Ni равен приблизительно 2,4 *нм*. Поскольку это меньше, чем длина свободного пробега электрона ($\approx 4 \, нм$), наличие пика ПЭС на уровне Ферми никеля повышает вероятность рассеяния электронов на поверхности наночастицы, а в конечном счете – вероятность передачи энергии, полученной электронами от фотонов, ионам наночастицы.

У Ni верхний край 3d-зоны находится выше уровня Ферми приблизительно на 0,5 эВ. Таким образом, наночастицы Ni способны преобразовывать в теплоту энергию фотонов всего ТГц-диапазона. Однако эта широкополосность сопровождается нежелательным свойством: поскольку верхний край 3d-зоны находится на 0,5 эВ выше E_F , наночастицы конвертера смогут нагреваться ИК-фотонами с энергиями вплоть до 0,513 эВ (длины волн ≥ 2,42 мкм). При этом фотоны, наиболее опасные с точки зрения создания шумового фона, соответствующие $\lambda \approx 10$ *мкм*, смогли бы попасть в диапазон поглощения. В связи с этим для защиты наночастиц конвертера от нежелательного нагревания требуется фильтр. Он должен отфильтровывать фоновое ИК-излучение с $\lambda <$ 30 мкм от объектива-источника, но пропускать полезное ТГц-излучение от него с $\lambda \ge 30$ *мкм*.

2.1. Оценка размера наночастиц Ni. Выбор размера наночастиц Ni был основан на анализе распределения плотности состояний фононов по энергии при температуре T = 300 K [9, 10, 13]. Мы воспользовались распределением из работ [9, 10] и приближенно разложили его на три пика (пунктирные кривые на рисунке 3).

Были рассчитаны три диаметра *D* наночастиц в соответствии с пиками подраспределений (таблица 1). Мы предположили, что частицы с этими диаметрами "настроены" на наиболее вероятные частоты колебаний ионов в наночастицах. Приближенно можно считать, что наночастицы с такими диаметрами поглощают большую часть излуче-

Рисунок 4 – Плотность состояний электронов в *Ni* [12]. Вертикальной пунктирной линией показано положение уровня Ферми

ния ТГц-диапазона. Соответственно, в оценках можно использовать минимальные энергии краев ПШПВ, а именно: 12; 20,5 и 30,5 мэВ в качестве минимальных энергий между энергетическими уровнями электронов. Тогда наночастицы этих подраспределений будут поглощать фотоны с энергиями, кратными соответственно 12 мэВ, 20,5 мэВ и 30,5 мэВ. ТГц-энергия будет поглощаться дискретно, однако в реальности, вследствие реального разброса в размере наночастиц, поглощаемый спектр будет квазинепрерывным. В наших оценках мы учли дискретность поглощаемого ТГц-спектра через степень черноты α. Кроме того, мы сделали следующий шаг в приближениях: при оценке поверхностной плотности наночастиц Ni в конвертере, мы предположили приближенно, что все наночастицы имеют одинаковый минимальный край ПШПВ плотности состояний фононов в 20,5 мэВ.

Оценим теперь, сколько атомов N никеля должно содержаться в частице, чтобы энергетический зазор между уровнями электронов в 3d-зоне

Энергия пика подраспределения, мэВ	Энергии краев ПШПВ, мэВ	Длины волн краев ПШПВ, мкм	Диаметр D наночастиц, нм	
E ₁ = 18	12	103,4	2.0	
	24	51,7	5,0	
E ₂ = 24,5	20,5	60,5	2.4	
	28,5	43,5	2,4	
E ₃ = 33	30,5	40,7	2,2	
	35,5	34,9		

Таблица 1 — Параметры трех подраспределений фононной плотности состояний в Ni при температуре T = 300 K

Рисунок 5 – Мощность Q как функция перепада температуры DT_m для наночастицы Ni радиусом $R_0 = 1,2$ *нм* в сферической оболочке желатина

был равен среднему минимальному краю ПШПВ плотности состояний фононов в 20,5 *мэВ*. Полное число энергетических уровней электронов в 3*d*-зоне равно числу атомов в частице. Тогда справедливо следующее соотношение: N - 1 == 5,5 э*B*/2,05·10⁻² э*B* = 268.

Таким образом, N = 269. У Ni решетка – гранецентрированная кубическая с 4 атомами в элементарной частице, число ячеек в частице, состоящей из 269 атомов, равно $n \approx 269/4 \approx 67$. Предположим, что частица никеля представляет собой кубик, тогда число ячеек в ребре частицы равно $l = (67)^{1/3} \approx 4$. Постоянная решетки Ni равна 3,52 Å [14], следовательно, величина края частицы равна $l \approx 4.3,52$ Å \approx $\approx 1,4$ *нм*, а ее пространственная диагональ ("диаметр" частицы D) равна (3)^{1/2}· $l \approx 1,73.1,4$ *нм* $\approx 2,4$ *нм*.

2.2. Оценка мощностей, требуемых для поддержания наночастиц Ni при температурах, определяемых их степенью черноты а. Решалась задача об изменении температуры в частице Ni, помещенной внутри сферической оболочки желатина в результате выделения теплоты в частице. Изменение температуры частицы Ni описывалось уравнением теплопроводности в сферических координатах с учетом функции источника q (r):

$$\rho C \frac{\partial T}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\lambda r^2 \frac{\partial T}{\partial r} \right) + q(r), \qquad (1)$$

где T – температура; ρ – плотность; C – удельная теплоемкость; λ – удельная теплопроводность; q – объемная плотность источника теплоты; r – сферический радиус.

Предполагалось, что параметры не зависят от температуры и могут быть описаны следующим образом:

$$0 \le r \le R_0: \lambda = \lambda_1, \rho = \rho_1, C = C_1, q = \frac{Q}{(4/3)\pi R_0^3}, \quad (2)$$

 $R_0 < r \le R$: $\lambda = \lambda_2$, $\rho = \rho_2$, $C = C_2$, q = 0, где R_0 – радиус наночастицы, R – радиус желатиновой оболочки ($R >> R_0$; в данной задаче $R = 5 \cdot 10^{-7}$ м, этот выбор обоснован тем, что желатин доминирует в объеме конвертера).

Начальные и краевые условия были следующими:

$$\left. \frac{\partial T(t,r)}{\partial r} \right|_{r=0} = 0, \ T(t,R) = T_R.$$
(3)

Решение задачи (1–3) было найдено численным методом линий [15, 16] относительно $\Delta T = T - T_R$, где $T_R = 300 \text{ K}$. Для контроля точности и времени расчета использовалось стационарное решение задачи:

$$\frac{1}{r^2}\frac{d}{dr}\left(\lambda r^2\frac{dT}{dr}\right) + q(r) = 0, \ T'(0) = 0, \ T(R) = T_R,$$

которое дало соотношение между мощностью Q и максимальным перепадом температуры ΔT_{u} :

$$\Delta T_m = \frac{Q}{8\pi} \left(\frac{1}{R_0 \lambda_1} + \frac{2}{R_0 \lambda_2} - \frac{2}{R \lambda_2} \right).$$

При достижении величины $\Delta T = 0,995 \cdot \Delta T_m$ источник теплоты отключался, и далее решалась задача об охлаждении частицы *Ni* до температуры 300 *K*. Численные расчеты были выполнены при параметрах материалов, приведенных в таблице 2.

Были рассчитаны величины мощности Q, требуемой для нагревания наночастицы Ni размером 2,4 *нм* для различных перепадов температуры DT_m (рисунок 5) в стационарном случае. Величины Q_i для пяти значений степени черноты α_i даны в таблице 3.

2.3. Оценка временных характеристик конвертера. В отличие от конвертера, разработанного в группе Кузнецова, работающего в реальном масштабе времени и имеющего размеры тепловыделяющих элементов $\approx 100 \text{ мкм} \times 100 \text{ мкм}$, в нашем конвертере размер тепловыделяющих элементов,

Таблица 2 – Параметры материалов, использованных при оценках

Материал	Плотность	Удельная теплоемкость	Удельная теплопроводность
Никель	$\rho_1 = 8,9 \ r/cm^3$	$C_1 = 440 Дж/к \cdot K$	$\lambda_1 = 90,9 \ Bm/M \cdot K$
Желатин	$\rho_2 = 1,3 \ e/cm^3$	<i>C</i> ₂ = 1900 Дж/кг·К	$\lambda_2 = 0,3 Bm/M \cdot K$

Параметры конвертера	α_{i}				
	1	0,7	0,5	0,3	0,1
$\Delta T_m, MK$	14	20	28	46.7	140
Q_i, Bm	6,34·10 ⁻¹¹	9,05.10-11	1,27.10-10	2,11.10-10	6,34·10 ⁻¹⁰
N_{i}, MM^{-2}	$2,71 \cdot 10^{3}$	1,90·10 ³	1,35·10 ³	8,13·10 ²	$2,71 \cdot 10^2$
Н, м	3,43	3,11	2,82	2,42	1,68

Таблица 3 – Параметры ТГц-ИК-конвертера при различной степени черноты а, наночастиц Ni

т.е. наночастиц *Ni*, гораздо меньше. Поэтому мы ожидаем получить временные характеристики конвертера, которые позволили бы работу в масштабе реального времени.

Путем численного метода линий [15], с помощью программы [16] были оценены временные характеристики ТГц-ИК-конвертера. Для наночастиц Ni размером 2,4 *нм* в сферической желатиновой оболочке для пяти значений мощности Q_i из таблицы 3 оценивались времена нагревания и охлаждения (для начальной температуры 300 *K*) (рисунок 6). Было найдено, что эти времена приблизительно равны 13 *нс*, что определенно позволяет эксплуатировать ТГц-ИК-конвертер в масштабе реального времени как в пассивном, так и в активном режимах.

2.4. Оценка радиальных распределений температуры. С помощью программы [16], были также рассчитаны радиальные распределения температуры для наночастиц Ni радиусом $R_0 = 1,2$ нм, находящихся в сферической желатиновой оболочке для пяти значений Q_i из таблицы 3 (рисунок 7). Распределения показывают, что применение наночастиц Ni позволяет избежать недостатков, присущих конвертеру Кузнецова и его коллег: эффект "кометного

хвоста" и расплывание изображения. Следовательно, время отклика и пространственное разрешение конвертера не пострадают.

На рисунке 7 видно, что в случае $\alpha_i = 0,5$ (нагревание на $\Delta T = 28 \ mK$), температура нагревания желатина относительно 300 K уменьшается почти до нуля на радиальном расстоянии около 40 *нм*, т. е. за пределами радиуса в 40 *нм* желатин не нагревается. При рассмотренных здесь концентрациях наночастиц *Ni* в желатине размер наночастиц ($\approx 2,4 \ mM$) почти на 4 порядка величины меньше, чем расстояние между ними. Поэтому перекрывание температурных полей нагретых наночастиц пренебрежимо мало, в результате эффекты "кометного хвоста" и расплывания изображения невозможны.

В конвертере группы Кузнецова размеры тепловыделяющих элементов равны $\approx 100 \ \text{мкm} \times 100 \ \text{мкm}$, а зазор между ними равен $\approx 10 \ \text{мкm}$, т.е. длина нагретого элемента на порядок больше ширины зазора. Очевидно, температурные поля нагретых элементов перекрываются, приводя к эффекту размывания изображения. Аналогичный эффект описан в работе Кеблински и др. [17].

Рисунок 6 – Рост температуры *DT* как функция времени нагрева/охлаждения *t* для наночастиц *Ni* радиусом *R*₀ = 1,2 *нм* в сферической оболочке желатина для пяти значений *Q*_i из таблицы 3

Рисунок 7 – Радиальное распределение температуры наночастицы *Ni* радиусом *R₀* = 1,2 *нм* в сферической оболочке желатина для пяти значений *Q*, из таблицы 3

2.5. Оценка поверхностной плотности наночастиц Ni. Исходя из температурной чувствительности ИК-камеры, оценим поверхностную плотность наночастиц Ni в конвертере, требуемую для реализации пассивной визуализации человека.

Очевидно, температурная чувствительность ΔT_{bb} , приводимая в технических условиях на ИКкамеры, относится к излучению абсолютно черного тела. Тогда порог чувствительности камеры по поверхностной плотности мощности равен $\Delta \varepsilon_{\lambda} = 4 \sigma \cdot T^{3} \cdot \Delta T_{bb}$, где σ – постоянная Стефана – Больцмана, $T = 300 \ K$. При $\Delta T_{bb} = 14 \ MK$ величина $\Delta \varepsilon_1 = 8,58 \cdot 10^{-8} Bm/мm^2$. Это означает, что для того, чтобы поверхность со степенью черноты *α* была замечена ИК-камерой, рост ее поверхностной плотности мощности должен быть равен или больше, чем $\Delta \varepsilon_1 = 8,58 \cdot 10^{-8} Bm/мm^2$, а рост температуры должен быть равен или больше, чем $\Delta T = \Delta T_{bb} / \alpha$.

В пункте 2.2 (см. рисунок 5) приведены значения мощности Q, требуемой для поддержания наночастиц Ni размером 2,4 нм в желатиновой матрице при температуре (300 $K + DT_m$). В стационарном состоянии в полупространство в котором находится ИК-камера, наночастицы выделяют мощность Q/2, поэтому поверхностная плотность числа наночастиц Ni на поверхности конвертера равна $N_i = \Delta \varepsilon_i / (Q_i/2)$. Эти величины для различных значений α приведены в таблице 3.

2.6. Оценка ТГц-мощности, подводимой от тела человека к конвертеру. ТГц-мощность Р, доставляемую от тела человека к конвертеру, можно оценить следующим образом:

 $P \approx S_s \cdot \mathcal{Q} \cdot T_{tot} \cdot T_{air} \cdot 0, 5 \cdot c^2 \cdot h \cdot \int_{34,9}^{103,4} \frac{d\lambda}{\lambda^5 \cdot [\exp(47,97/\lambda) - 1]},$ где S_s – эффективная площадь поверхности человека, которая эмитирует ТГц-излучение к ТГцобъективу, $S_{s} \approx 1, 1 \cdot 10^{12} \, \text{мкм}^{2}$ (мы оценили ее как площадь полуцилиндра диаметром 40 см и высо-

к

 Ω – телесный угол, в котором человек видит диаметр ТГц-объектива (для определенности мы выбрали диаметр ТГц-объектива равным 30 см);

*Т*_{tot} – общее пропускание ТГц-объектива и теплового фильтра [2] (мы оценили эту величину как $T_{tot} \approx 0,08$ – в области длин волн ~ 30 *мкм*, вклад которой в общую излучательную способность тела человека в ТГц-диапазоне максимален);

T_{air} – пропускание слоя воздуха между человеком и ТГц-объективом;

0,5 - множитель, введенный для приближенного учета отличия тела человека от абсолютно черного тела;

 $\int_{34,9}^{103,4} \frac{d\lambda}{\lambda^5 \cdot [\exp(47,97/\lambda) - 1]} = 8,91 \cdot 10^{-8} \, \text{мкм}^{-4} - \text{интег-}$

рал в пределах от 34,9 до 103,4 мкм от функции, описывающей распределение излучения абсолютно черного тела по длинам волн (здесь число 47,97 – величина hc/kT, выраженная в мкм, где h и к-постоянные Планка и Больцмана, соответственно; с – скорость света; Т – температура). Пределы интегрирования определены в п. 2.1 (см. таблицу 1).

Таким образом, мощность ТГц-излучения тела человека, доставляемая до желатиновой матрицы с Ni наночастицами равна $P \approx 0,23 \ \Omega \cdot T_{air}, Bm$. Для средних значений $\alpha_i = 0.5, H = 2.82 \text{ м}$, телесного угла $\Omega = 8,9.10^{-3} \ cp$ и пропускания $T_{air} \approx 0,245$, мощность $P \approx 0.5 \ MBm$. Для сравнения, в таблице 4 приведены данные о системе визуализации ТГцисточника, экспериментально проверенной группой Кузнецова [6-8] и оценки для нашего подхода. В группе Кузнецова использовался монохроматический (0,3 ТГи) источник излучения мощностью 5 мВт и ИК-камера с эквивалентной шумовой разностью температур (NETD) в 100 мК. Таким образом, наши оценки показывают, что применяя в ТГц-ИК-конвертере в качестве тепловыделяющих элементов наночастицы Ni и современную ИК-камеру с NETD $\approx 14 \ MK$, можно нагреть на-

Таблица 4 – Сравнение параметров двух подходов
визуализации ТГц-излучения с применением ТГц-ИК-конвертеров

Параметры системы ТГц-визуализации	Kuznetsov <i>et al.</i> [6–8] (эксперимент)	Наш подход (оценки)
Режим работы	Активный	Пассивный и/или активный
Источник ТГц-излучения	Генератор обратной волны ВWO-30	Человеческое тело или источник излучения
Мощность, требуемая для работы, мВт	5	0,5
Тип тепловыделяющего элемента	Резонатор с разрезным кольцом	Наночастица Ni
Размеры тепловыделяющего элемента	pprox 100 мкм $ imes 100$ мкм	диаметр ≈ 2,4 <i>нм</i>
Чувствительность ИК-камеры (параметр NETD), <i>мК</i>	100	14
Площадь ТГц-ИК-конвертера, мм ²	804,25	2940

той 175 *см*);

ночастицы конвертера с помощью ТГц-излучения тела человека мощностью всего в 0,5 *мВт*, что на порядок меньше мощности источника в экспериментах Кузнецова и его коллег. Следует отметить также, что у нашего ТГц-ИК-конвертера площадь $в \approx 3,5$ раз больше.

2.7. Оценка эффективной площади конвертера. Исходя из распределения ТГц-мощности тела человека, оценим эффективную площадь конвертера S^* , которую можно нагреть на температуру $\Delta T = \Delta T_{bb}' \alpha$. Эффективная площадь равна $S^* = \alpha \cdot P / \Delta \varepsilon_{\lambda} = \alpha \cdot P / 4 \sigma \cdot T^3 \cdot \Delta T_{bb}$. Здесь P -ТГц-мощность, доставляемая от человека к конвертеру. Тогда эффективная площадь, которую способна нагреть ТГц-мощность, излучаемая человеком, равна

$$S^* = \alpha \cdot P / \Delta \varepsilon_{\lambda} = 5,75 \cdot 10^{-2} \cdot \alpha \cdot \Omega \cdot T_{air} / \sigma \cdot T^3 \cdot \Delta T_{bb}.$$

2.8. Оценка геометрической площади конвертера. Исходя из характеристик стандартного объектива ИК-камеры *Mirage P*, определим геометрические размеры конвертера и его площадь, видимую камерой. Согласно данным веб-сайта [1], минимальное расстояние *d* между объектом (в нашем случае, ТГц-ИК-конвертером) и объективом камеры равно 4 дюймам, т.е. d = 101,6 мм. При угле поля зрения $\gamma = 26^\circ$, высота конвертера *h* равна $2d \cdot tg(\gamma/2) \approx 47$ мм. При стандартном соотношении сторон 4:3 ширина *w* конвертера равна (4/3)·47 мм = 62,65 мм. Таким образом, площадь конвертера равна

 $S_{conv} = 47 \text{ MM} \cdot 62,65 \text{ MM} = 2,94 \cdot 10^3 \text{ MM}^2.$

2.9. Оценка рабочего расстояния. Оценим рабочее расстояние H между ТГц-объективом и объектом-источником ТГц-излучения, приравняв площадь конвертера S_{conv} и эффективную площадь S^* , которую можно нагреть ТГц-мощностью человеческого организма на температуру $\Delta T = \Delta T_{bb}/\alpha$. Тогда

 $5,75 \cdot 10^{-2} \cdot \alpha \cdot \Omega \cdot T_{air} / \sigma \cdot T^3 \cdot \varDelta T_{bb} = 2,94 \cdot 10^3 \text{ MM}^2.$ (4)

В этом уравнении как телесный угол Ω , так и пропускание воздуха T_{air} – функции расстояния H. Мы выбрали радиус ТГц-объектива равным 0,15 m, а пропускание воздуха T_{air} было определено экспериментально (рисунок 8). Рассчитывая величину Ω и оценивая величину T_{air} для одного и того же расстояния H, а затем подставляя их в уравнение (1), можно определить значение H, удовлетворяющее уравнению (4). Предположим, что (рисунок 8), в области длин волн 30–250 *мкм* среднее пропускание слоя воздуха толщиной 1,2 m приближенно равна 0,55. Тогда для произвольного расстояния H пропускание воздуха равно $T_{air} \approx (0,55)^k$, где k = H/(1,2 m).

Чтобы сделать выводы, выберем среднее значение $\alpha_i = 0,5$. Расстояние H = 2,82 *м* в таблице 3 показывает, что из-за поглощения в воздухе, подход с использованием наночастиц *Ni* не обеспечит пассивную визуализацию ТГц-излучения в задачах безопасности: это расстояние слишком мало, так как задачи безопасности обычно требуют расстояний 4–20 *м*. Кроме того, из рисунка 9 следует, что одежда полностью поглощает высокочастотное ТГц-излучение человеческого организма, в то время, как наночастицы *Ni* хорошо преобразуют в теплоту именно высокочастотную часть ТГц-диапазона.

Однако подход с наночастицами Ni приемлем для пассивной визуализации ТГц-излучения в медицине, при небольших расстояниях между пациентом и ТГц-объективом.

Рассмотренный подход можно использовать для активного дистанционного обнаружения скрытого оружия и контрабанды в реальном масштабе времени, если ТГц-ИК-конвертер работает в субмиллиметровом и миллиметровом диапазонах длин волн, в которых пропускание ткани достаточно высоко. В нашем случае в конвертере предпо-

Рисунок 9 – Пропускание различных тканей как функция длины волны

Рисунок 10 – Схема плотности электронных состояний как функция энергии электронов в наночастице из сплава с тяжелыми фермионами при комнатной температуре [18]. Вертикальными штриховыми линями выше E_F обозначены незанятые состояния лёгких электронов

чтительно использовать наночастицы из сплавов с тяжелыми фермионами, а не наночастицы Ni. Наночастицы из сплавов с тяжелыми фермионами способны эффективно преобразовывать в теплоту именно длинноволновое ТГц-излучение [18]. Подробнее эти соединения рассмотрены в Приложении 1.

Кемп [19] проанализировал прогресс за последние 10 лет в практическом развитии ТГцспектроскопии как метода детектирования скрытых взрывчатых веществ, и пришёл к выводу, что визуализация низкочастотной части ТГц-излучения была бы более перспективным методом в задачах обеспечения безопасности. Этот вывод согласуется с нашим заключением, что рассмотренный ТГц-ИК-конвертер был бы применим в субмиллиметровых и миллиметровых радарах, формирующих изображение.

3. Заключение. Для визуализации предметов, скрытых под одеждой, можно использовать достоинства свойств ТГц-излучения, типичные для соседних с ним диапазонов электромагнитного спектра. Подобно радиоволнам, низкочастотное ТГцизлучение способно проникать сквозь материалы, непрозрачные для видимого излучения (например, одежду) и, подобно ИК-излучению, ТГц-лучи могут преломляться и быть сфокусированы линзами. Для визуализации скрытых металлических объектов можно использовать другое свойство ТГцизлучения – его способность отражаться металлами. Предложена схема визуализации с ТГц-ИКконвертером, содержащим наночастицы металла или соединения с пиком плотности электронных состояний вблизи уровня Ферми. Наночастицы *Ni* можно использовать в качестве конвертеров высокочастотного ТГц-излучения в пассивных приборах визуализации медицинских объектов. Наночастицы соединений с тяжелыми фермионами могут применяться как конвертеры низкочастотного ТГц-излучения в активных приборах визуализации для задач обеспечения безопасности.

В рассмотренном ТГц-ИК-конвертере временные характеристики позволяют визуализацию в реальном масштабе времени как в пассивном, так и в активном режиме. Комбинация этих характеристик со способностью конвертера работать при комнатной температуре открывает новые возможности применения как в борьбе с терроризмом, так и в ранней диагностике рака.

Приложение 1. Наночастицы соединений с тяжелыми фермионами как ТГц-ИК-конвертеры. В объемных соединениях с тяжелыми фермионами (СТФ) [20], таких как CePd₃, CeAl₃, CeCu₆ и др., при низких температурах (~10-100 К), благодаря узкой и частично занятой электронной f-зоне на уровне Ферми, плотность состояний значительно выше, чем в простых металлах, на 2-3 порядка, что обеспечивает очень интенсивное рассеяние электронов. При комнатной температуре это свойство исчезает из-за размывания f-зоны фононами. Однако в наночастицах СТФ даже при комнатной температуре интенсивное рассеяние электронов и узкий f-пик могут быть сохранены [18]. Для этого наночастицы СТФ должны иметь энергетическую щель Е_а между верхним краем f-зоны и ближайшим незанятым электронным уровнем в зоне легких электронов (рисунок 10), с условием $[(\Gamma_{1/2}) + E_{2}] > kT = 26 \cdot M \cdot B$. Такие наночастицы СТФ могут стать эффективными ТГц-ИК-конвертерами для длинноволновой части ТГц-диапазона.

При комнатной температуре плотность состояний электронов в f-зоне имеет вид, показанный на рисунке 10, где $\Gamma_{\rm f}$ – ширина f-зоны, $\Gamma_{\rm f} \sim 10-100$ K (в энергетических единицах: $\Gamma_{\rm f} \sim 8,7\cdot 10^{-4} - 8,7\cdot 10^{-3}$ эB). Фотоны способны возбудить f-электроны, если их энергии кратны ($\Gamma_{\rm f}$ /N), т.е. ($\Gamma_{\rm f}$ /N), $2\cdot(\Gamma_{\rm f}$ /N), $3\cdot(\Gamma_{\rm f}$ /N), ..., ($\Gamma_{\rm f}$ /2), где N – число атомов в частице СТФ.

При уменьшении числа N, энергетический зазор между электронными уровнями увеличивается как $\Delta E \sim E_F/N$ в зоне легких электронов и как $\Delta E_f \sim \Gamma_f/N$ в зоне тяжелых электронов. Тогда для того чтобы сохранить f-зону, т.е. чтобы сумма энергий [$(\Gamma_f/2) + E_g$] была больше, чем kT, число N должно удовлетворять неравенству: N $\leq E_F/kT$. Допустим, что $E_F \approx 10 \ \beta B$. Тогда N ≤ 385 , и размер частицы составит несколько нанометров.

При $\Gamma_{\rm f} \sim 8,7\cdot10^{-4} - 8,7\cdot10^{-3}$ эВ, величина $\Delta E_{\rm f}$ лежит в диапазоне $\Delta E_{\rm f} \sim \Gamma_{\rm f}/{\rm N} \sim 2,3\cdot10^{-6} - 2,3\cdot10^{-5}$ эВ. Таким образом, f-электроны могут поглощать фотоны с энергиями: 2,3·10⁻⁶, 4,6·10⁻⁶, 6,9·10⁻⁶, ..., 4,3·10⁻⁴ эВ; эти оценки – для нижнего значения $\Gamma_{\rm f}$. Для верхнего значения $\Gamma_{\rm f}$ энергии фотонов, которые могут быть поглощены, – следующие: 2,3·10⁻⁵, 4,6·10⁻⁵, 6,9·10⁻⁵, ..., 4,3·10⁻³ эВ. Эти энергии соответствуют частотам, занимающим диапазон от 0,555 $\Gamma\Gamma \mu$ до ~ 1 $T\Gamma \mu$. Суммируя, можно заключить, что длинноволновые TГцфотоны могут эффективно преобразовываться в теплоту при использовании в TГц-ИК-конвертере наночастиц СТФ.

Авторы признательны Н. Ж. Кайрыеву за полезные обсуждения. Вклады соавторов в эту работу: К.А.М. – концепция и оценки, В.М.Л. и П.В.К. – расчеты данных, приведенных на рисунках 5–7; А.К.К. – экспериментальные измерения пропускания воздуха и тканей (данные, приведенные на рисунках 8 и 9).

Литература

- Веб-сайт компании Infrared Cameras, Inc., "Mirage P-Series Infrared Thermal Imaging Camera". URL: http://www.infraredcamerasinc.com/infrared-camera-Mirage.html (8 декабря 2012 г.).
- Веб-сайт компании ЗАО ТИДЕКС[®], "THz Lenses, THz Materials, and THz Low Pass Filters". URL: http://www.tydexoptics.com/en/products/thz_optics/ (8 декабря 2012 г.).
- 3. *A. Luukanen et al.* Measured performance of a highresolution passive video-rate submillimeter-wave imaging system demonstrator for stand-off imaging. *Proc. SPIE* **8362**, 836209 (2012).
- A. Luukanen et al. "Design and performance of a passive video-rate THz system demonstrator". Proc. SPIE 8022, 802207 (2011).
- 5. *E. Grossman et al.* "Passive terahertz camera for standoff security screening". *Appl. Opt.* **49** (19), E106-E120 (2010).
- 6. *S.A. Kuznetsov et al.* "Bolometric THz-to-IR converter for terahertz imaging". *Appl. Phys. Lett.* **99**(2), 023501 (2011).

- S.A. Kuznetsov et al. "THz imaging system based on THz-to-IR converter". *Technisches Messen*, 78(11), 526–532 (2011).
- S.A. Kuznetsov et al. "Matrix structure of metamaterial absorbers for multispectral terahertz imaging". *PIER*, 122, 93–103 (2012).
- M.G. Kresch et al. "Neutron scattering measurements of phonons in nickel at elevated temperatures". *Phys. Rev. B* 75(10), 104301 (2007).
- M.G. Kresch. "Temperature dependence of phonons in elemental cubic metals studied by inelastic scattering of neutrons and X-rays". PhD Thesis, California Institute of Technology, Pasadena, CA (2009).
- 11. *P. Ziesche and G. Lehmann*. Ergebnisse in der Elektronentheorie der Metalle, Akademie-Verlag, Berlin (1983).
- S. Hüfner, G.K. Wertheim, and J.H. Wernick. "X-Ray photoelectron spectra of the valence bands of some transition metals and alloys." *Phys. Rev.* B 8(10), 4511–4524 (1973).
- C.V. Pandya et al. "Lattice mechanical properties of Pd, Pt and Ni – A Model potential approach". J. Korean Phys. Soc. 38(4), 377–383 (2001).
- Н. Ашкрофт, Н. Мермин. Физика твердого тела. М.: Мир, 1979.
- W.E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego (1991).
- В.М. Лелевкин, Э.Б. Кулумбаев, П.В. Козлов, Н.Ж. Кайрыев. Моделирование микроволнового нагрева воды / под ред. В.М. Лелевкина. Бишкек: КРСУ, 2009. 161 с.
- 17. *P. Keblinski et al.* "Limits of localized heating by electromagnetically excited nanoparticles". *J. Appl. Phys.* **100**(5), 054305 (2006).
- К.А. Молдосанов. "Наносплавы с тяжелыми фермионами как детекторы терагерцевого излучения". РЭНСИТ: Радиоэлектроника. Наносистемы. Информационные технологии 3(1), 102-105 (2011). ISSN 2218–3000.
- M.C. Kemp. "Explosives detection by terahertz spectroscopy – a bridge too far?". *IEEE Trans. Terahertz Sci. Tech.* 1(1), 282–292 (2011).
- G.R. Stewart. "Heavy-fermion systems". Rev. Mod. Phys. 56(4), 755–787 (1984).