ПРИМЕНЕНИЕ РОБОТОТЕХНИЧЕСКИХ СРЕДСТВ МЧС РОССИИ ДЛЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ ТЕХНОГЕННЫХ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Н.В. Северов, А.В. Байков

Описаны преимущества приложения робототехнических средств (РТС) при чрезвычайных ситуациях, изложены условия и обстановка, в которых целесообразно их применение.

Ключевые слова: ликвидация последствий чрезвычайных ситуаций; робототехнические средства; аварийно-спасательные работы; отравляющие вещества; химические аварии; выброс; пожары.

В МЧС России с 1996 г. успешно внедряются в практику ликвидации последствий чрезвычайных ситуаций (ЧС) безлюдные технологии с применением робототехнических средств (РТС).

Робототехническое средство — это автоматизированное самодвижущееся техническое устройство (машина), которое выполняет заданные функции человека и другие виды работ без непосредственного его участия в рабочей зоне в определенных условиях и при взаимодействии с окружающей средой.

Робототехнические средства классифицируются по среде применения на наземные, воздушные (самолетные, вертолетные) и подводные, а по массогабаритным показателям на легкие (массой до 1 000 кг), средние (массой 20 000 кг) и тяжелые (массой более 20 000 кг) [1].

По технологическим возможностям и выполняемым в ЧС задачам РТС подразделяются на три категории:

- 1. *PTC легкого класса* для ведения разведывательных работ и выполнения отдельных технологических операций.
- 2. РТС среднего класса для выполнения более масштабных отдельных видов аварийноспасательных и неотложных восстановительных работ.
- 3. РТС тяжелого класса для выполнения, наряду с отдельными видами работ, комплекса крупномасштабных и трудоемких работ, т. е. для выполнения в целом первоочередных задач при ликвидации последствий ЧС.

В условиях ЧС при выполнении разнообразных аварийно-спасательных работ РТС могут находиться в различных условиях при наличии

Таблица 1 – Некоторые произошедшие крупномасштабные аварии на потенциально опасных объектах, их поражающее действие и последствия

<u>№</u> п/п	Авария	Тип и кол-во выброшенного вещества	Поражающее действие / масштаб зоны	Последствия	
1	2	3	4	5	
Крупномасштабная химическая авария					
1.	Аварийный выброс аммиака (ПО "Азот" г. Ионава), 1989 г.	Аммиак, 7000 т, нитрофоска, 24 000 т	Заражение, пожар / 10 км²	Погибло 7 человек, пострадало 57 человек, отселено из г. Ионава 25–30 тыс. чел.	
Крупномасштабные радиационные аварии					
2.	Чернобыльская АЭС, г. Чернобыль, СССР, 1986 г.	Уран, 170 т	Взрыв реактора, радиоактивное загрязнение 5,2 млн Бк/500 км	Эвакуировано 335 тыс. человек, пострадало 2,6 млн чел. Погибло в первые мес. –31 чел.	
3.	Япония, АЭС "Фукусима", 2011 г.	Уран, 90 т	Радиоактивное загрязнение 370 тыс. Бк/40 км	Эвакуировано 70 тыс. чел.	
Крупномасштабные аварии на взрывопожароопасных объектах					
4.	Пожар на 102-м арт. арсенале МО РФ, пос. Пугачево, Удмуртия, 2011 г.	Снаряды, 170,5 тыс. шт.	Пожар, взрыв, разлет осколков, боеприпасов / 10 км	Пострадало 95 чел.	
5.	Пожар на 99 арсенале МО РФ, пос. Урман, Башкирия, 2011 г.	Снаряды, более 77 тыс. шт.	Пожар, взрыв, разлет осколков, боеприпасов / 0,5 км	Пострадало 12 чел.	

искусственных и естественных преград (здания, сооружения, лесной массив, сильнопересеченная местность).

При ликвидации последствий ЧС условия особого риска, при которых существует реальная угроза для жизни человека и потребуется применение РТС, наиболее вероятно возникают в результате техногенных и особенно крупномасштабных ЧС. К ним относятся радиацион-

ные аварии, химические аварии, аварии на взрывопожароопасных объектах.

Последствия некоторых произошедших крупномасштабных аварий приведены в таблице 1.

Обобщая опыт ликвидации радиационных, химических аварий и аварий на взрывопожароопасных объектах, можно выделить следующие приоритетные работы для выполнения РТС:

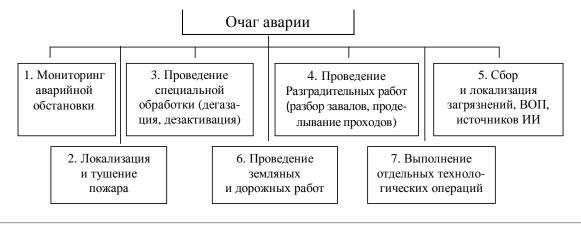


Таблица 2. – Характерные условия выполнения в ЧС спасательных работ с применением РТС

Характер аварийной обста- новки и решаемых задач	№ п/п	Условия выполнения работ для РТС	
I. Инфраструктура в районе расположения аварийного объекта	1. 2. 3. 4. 5. 6.	Сильно пересеченная местность Наличие лесистых участков местности Лесистая местность В зоне производственной, жилой, городской, застройки Наличие ЛЭП высокого напряжения Наличие телевизионной станции гражданского назначения	
II. Характер и особенности аварийного объекта	7. 8. 9. 10.	Одиночное сооружение (из дерева, кирпича, бетона, железобетона) Комплекс сооружений Расположение вблизи за лесным массивом Расположение в лесном массиве	
III. Характерные места расположения РТС относительно аварийного объекта	11. 12. 13. 14.	Внутри здания, сооружения Внутри заглубленного сооружения В непосредственной близости за сооружением (между сооружениями) Внутри котлована, за обваловкой, в низине, в лощине	
IV. Ликвидация характерных поражающих последствий аварии	15. 16. 17. 18. 19. 20. 21. 22.	При наличии разрушений:	
V. Метеорологические и другие условия 23.		При наличии дождя, снегопада, тумана	

Для выполнения указанных приоритетных работ в МЧС России создана система РТС, которая по организационно-штатной принадлежности имеет следующую структуру:

- 1. На оснащении 294 ЦСООР имеется 12 РТС: 4 РТС серии "BROKK" (Швеция) mini Cat, BROKK-110, BROKK-330, BROKK-180; 4 РТС серии "MF" (Германия) MF-3, MF-4; РТС серии "TEL-630" (Германия) teleMAX, tEODor; три отечественных РТС серии "MPK" MPK-01, MPK-27, MPK-25 УТ.
- 2. Н оснащении отряда "Центроспас" МЧС России имеются два отечественных беспилотных разведывательных аппарата Иркут-2Ф, ZALA 421-07 и НЕ-60 (Франция).
- 3. На оснащении ВНИИ ПО МЧС России имеются три пожарных РТС РТС МРК-РП, ЕЛЬ-4, ЕЛЬ-10 (Россия, Хорватия), LUF-60 (Австрия).

Общий вид РТС, показан на рисунках 1–3. На основании проведенного анализа развития некоторых произошедших аварий, создаваемой в них аварийной обстановки и учитывая данные таблицы 1, в таблице 2 сформулированы условия выполнения РТС спасательных работ, которые в той или иной степени могут оказать влияние на управление РТС в ЧС [2].

Система РТС МЧС России имеет следующие возможности выполнения спасательных работ в ЧС:

Разведка и мониторинг аварийной обстановки: видеообзор участка местности, видеоосмотр аварийного сооружения (внутри, снаружи), химический измерительный мониторинг, радиационный измерительный мониторинг, пожаротермический измерительный мониторинг.

Проведение разградительных работ: разборка (расчистка) завалов (из кирпича, из легких элементов конструкций, лесного завала), проделывание прохода в завалах.

Проведение земляных и дорожных работ: отрывка траншеи, канавы (рва), устройство обваловки (насыпи), засыпка выемки (рва), устройство съезда, расчистка дороги, расчистка пути

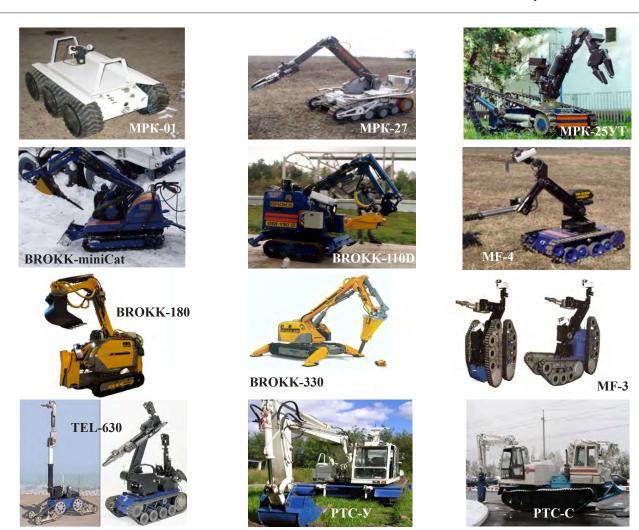


Рисунок 1 – Общий вид наземных РТС, находящихся на оснащении 294 Центра "Лидер" МЧС России

Рисунок 2- Общий вид пожарных РТС, находящихся на оснащении ВНИИ ПО МЧС России

Рисунок 3- Общий вид БПЛА, находящихся на оснащении отряда Центроспас МЧС России

движения, устройство пути движения (бульдозерным оборудованием).

Проведение работ на химически зараженной местности: обваловка пролитых ОХВ, снятие слоя зараженного грунта.

Проведение работ на радиационно загрязненной местности: сбор (эвакуация) изделий, мелких обломков радиоактивного излучения, снятие слоя радиационно загрязненного грунта.

Сбор и локализация источников ионизирующего излучении (ИИ), взрывоопасных предметов (ВОП) и загрязнений: захват, подъем, перемещение и погрузка радиоактивных отходов, сбор и погрузка химически зараженного грунта, сбор и погрузка радиационно загрязненного грунта, разведка местности на наличие аварийно разбросанных боеприпасов.

Локализация и тушение пожара в зоне аварии: струйное тушение пожара водой, порошком, пеной, ликвидация (тушение) очага возгорания (внутри здания, сооружения, на территории, за пределами здания, сооружения).

Выполнение отдельных технологических операций (по типу аварийно-спасательного инструмента): выполнение демонтажно-монтажных работ, разрушение ж/б элемента (в режиме

бетонолома), перекусывание металлических тросов, прутьев (арматуры), захват, подъем, разворот, перемещение и опускание груза, рыхление грунта (в режиме отбойника).

Таким образом, следует констатировать, что практически все техногенные ЧС в той или иной степени сопровождаются пожарами или взрывами, заражением или радиационным загрязнением местности, условиями массированного осколочного или высокотемпературного воздействия [3]. Это, безусловно, требует применения комплекса РТС, особо устойчивых к поражающим факторам ЧС, и обосновывает применение робототехники, а также формирует специфические условия ее применения.

Литература

- 1. Северов Н.В. Применение робототехники в чрезвычайных ситуациях: теория и практика: монография / Н.В. Северов. М.: АГЗ, 2011. 233 с.
- 2. Развитие, технология и эффективность применения робототехники в чрезвычайных ситуациях: монография / под научн. рук. Н.В. Северова. Ч. 1–4. М.: АГЗ, 2010. 702 с.
- Катастрофы конца XX века / под общ. ред. В.А. Владимирова. М.: МЧС РФ, 1998. 398 с.