УДК 547.496.3.542.9(043.3)(575.2)(04)

СИНТЕЗ И КОМПЬЮТЕРНЫЙ ПРОГНОЗ УГЛЕВОДНЫХ ПРОИЗВОДНЫХ ПИПЕРАЗИНА И ПИПЕРИДИНА

Ю.А. Абдурашитова – канд. хим. наук, ст. преподаватель, **Ж.А. Джаманбаев** – докт. хим. наук, профессор, **В.С. Дермугин** – канд. хим. наук, ст. науч. сотр.

Разработан способ синтеза углеводных производных пиперазина и пиперидина с гликозилтиоамидными связями и проведена оценка биологической активности соединений с использованием компьютерной программы PASS.

Ключевые слова: моносахариды; N-гликозиды; гликозилизотиоцианаты; амины; гликозилтиомочевины.

В настоящей работе рассмотрены методы синтеза углеводсодержащих производных тиомочевин на основе реакций взаимодействия гликозилизотиоцианатов с аминами и оценке биологической активности соединений с использованием компьютерной программы PASS [1–3].

Известно, что введение углеводов в структуру биологически активных веществ приводит к изменению спектра их биологического действия [4–5]. В качестве углеводов и аминов в данной работе использовали D-глюкозу, D-галактозу, пиперазин и пиперидин. Выбор агликонов обусловлен их биологической активностью. Пиперидиновый цикл лежит в основе структуры мно-

гих алкалоидов, которые оказывают специфическое физиологическое действие на животный и человеческий организм. Алкалоидсодержащие препараты используются как лекарственные, наркотические и вкусовые вещества, а производные пиперазина применяются в медицине и ветеринарии как высокоэффективные антигельминтные препараты [6].

Реакции взаимодействия гликозилизотиоцианатов (I) с пиперазином и пиперидином в среде абсолютного бензола приводят к образованию их углеводных производных $II_{a,b}$ - $III_{a,b}$ (см. схему), физико-химические характеристики которых представлены в табл. 1–2.

Способ получения производных гликозилтиомочевин.

Таблица 1 Физико-химические характеристики производных гликопиранозилтиомочевин

№ соеди- нения	Выход,	Тпл, ⁰С	Rf	Брутто-формула	Найдено (Вычислено), %		
					С	Н	N
IIa	84	132-134	0,25	C19H29N3SO9	48,24 (47,99)	5,98 (6,15)	7,69 (8,84)
IIb	72	134-136	0,22	C19H29N3SO9	47,53 (47,99)	6,12 (6,15)	8,95 (8,84)
IIIa	95	143-146	0,74	C20H30N2SO9	50,50 (50,62)	5,68 (6,37)	5,98 (5,90)
IIIb	92	196-198	0,69	C20H30N2SO9	51,45 (50,62)	6,67 (6,37)	6,00 (5,90)

Таблица 2 Характеристические полосы поглощения в ИК-спектрах производных гликопиранозилтиомочевин

№ соеди- нения		Колебания уг		Колебания агликона, v, см-1		
	C=O	C-O-C	пиранозное кольцо	N-H (>NH ₂ +)	C=S	С-Н (аром.)
IIa	1748	1229	1038, 917 (β-форма)	3370 1544	1422 1368 1334	601
IIb	1748	1227	1082, 1051, 956, 918 (β-форма)	3368 1542	1425 1372 1330	602, 495
IIIa	1751	1225	1105, 1038, 915(β-форма)	3387 1550	1429 1379 1320	719, 600, 490
IIIb	1750 1736	1274 1238 1224	1117, 1052, 1024, 976, 959, 920 (β-форма)	3342 1547	1431 1374 1319	901, 881, 851, 820, 742, 707, 632, 547

Материалы и методы. ИК-спектры получены с помощью спектрофотометров: ИКС-29, Specord M-80 с программой "Soft Spectra", Фурье-ИК-спектрометр "Spectrum BX II" в области $400-4200 \text{ cm}^{-1}$ (прессование с KBr).

Чистота соединений (Π_a - Π_a ; Π_b - Π_b) доказана методом ТСХ на пластинках "Silufol" в системе хлороформ-ацетонитрил-гексан (10:3:2).

Синтез N-(2,3,4,6-тетра-O-ацетил- β -D-глюкопиранозил)-N-пиперазилтиомочевины (II_a). В колбу помещают 0,1 г (0,3 ммоль) 1-изотиоциано-1-дезокси-2,3,4,6-тетра-O-ацетил- β -D-глюкопиранозы, растворяют в 5 мл абсолютного бензола, добавляют 0,022 г (0,3 ммоль) высушенного пиперазина и кипятят, контролируя ход реакции TCX. Раствор упаривают, остаток перекристаллизовывают

из абсолютного эфира. Выход: 0,101 г (84%). T_{nn} =132-134°C. Rf=0,25.

Синтез N-(2,3,4,6-тетра-O-ацетил- β -D-галактопиранозил)-N-пиперазилтиомочевины (II_b). Аналогично из 0,1 г (0,3 ммоль) 1-изотиоциа но-1-дезокси-2,3,4,6-тетра-O-ацетил- β -D-галактопиранозы и 0,022 г (0,3 ммоль) пиперазина в 5 мл абсолютного бензола получают соединение (II_b). Выход: 0,086г (72%). $T_{n,n}$ =134-136 0 C. Rf=0,22.

Синтез N-(2,3,4,6-тетра-O-ацетил- β -D-глюкопиранозил)-N-пиперидилтиомочевины (III_d). В колбу помещают 0,1 г (0,3 ммоль) 1-изотиоциано-1-дезокси-2,3,4,6-тетра-O-ацетил- β -D-глюкопиранозы, растворяют в 5 мл абсолютного бензола, добавляют 0,039 мл (0,4 ммоль) пиперидина и кипятят. Ход реакции контроли-

руют ТСХ. Раствор упаривают, остаток перекристаллизовывают из абсолютного эфира. Выход: 0,116г (95%). $T_{nn}=143-146^{\circ}\text{C}$. Rf=0,74.

Синтез N-(2,3,4,6-тетра-О-ацетил- β -D-галактопиранозил)-N-пиперидилтиомочевины (III_b). Аналогично из 0,1 г (0,3 ммоль) 1-изотиоциано-1-дезокси-2,3,4,6-тетра-О-ацетил- β -D-галактопиранозы и 0,039 мл (0,4 ммоль) пиперидина в 5 мл абсолютного бензола получают соединение (III_b). Выход: 0,112 г (92%). T_{nn} =196-198°C. Rf=0,69.

Результаты

Прогноз биологической активности углеводных производных пиперазина и пиперидина. При прогнозировании свойств физиологически активных веществ применяют математические методы установления связи "биологическая активность — химическая реакционная способность — структура". Для оценки биологической активности соединений и установления функциональных взаимосвязей структурных характеристик с активностью используются различные варианты классификации с применением

Таблица 3 Данные прогноза биологической активности

№ соеди- нения	Структура	Pa	Активность
IIa-IIb	R ₁ R ₃ NH-C-N NH	0,936 0,823 0,799 0,677 0,659 0,649 0,594 0,530	Лечение рестеноза Противоопухолевая Ингибитор проницаемости мембран Противоопухолевая (рак желудка) Противоопухолевая (рак легких) Алкилятор Противоопухолевая (рак поджелудочной железы) Противоопухолевая (лимфома)
IIIa-IIIb	R_1 R_2 R_3 R_4 R_4 R_4	0,928 0,814 0,801 0,683 0,672 0,661 0,604 0,533	Лечение рестеноза Ингибитор проницаемости мембран Противоопухолевая Противоопухолевая (рак желудка) Алкилятор Противоопухолевая (рак легких) Противоопухолевая (рак поджелудочной железы) Противоопухолевая (non-Hodgkin's lymphoma)
IVa	R_1 R_2 R_3 R_4 R_4 R_4	0,851 0,819 0,735 0,639 0,588 0,531 0,513	Ингибитор проницаемости мембран Противоопухолевая Антигельминтная (нематодоз) Алкилятор Липотропная Антивирусная Антивирусная (грипп)
IVb	R_1 R_2 R_3 R_4 R_4	0,855 0,817 0,692 0,635 0,583 0,568 0,549 0,547	Ингибитор проницаемости мембран Противоопухолевая Антигельминтная (нематодоз) Алкилятор Липотропная Лечение рестеноза Антивирусная (грипп) Иммуностимулянт
IIb-IIIb IVa	R=CH2OAc; R1=OAc; R2=H; R3= R=CH2OH; R1=H; R2=OH; R3=	OAc; =OAc; =OH; =OH;	R4=OAc R4=OAc R4=H R4=OH

кластер-анализа, нейронных сетей, методов распознавания. Одной из наиболее известных систем является алгоритм PASS [7].

Базовыми структурами для направленного поиска были выбраны углеводные производные пиперазина и пиперидина. В данной работе прогноз биологической активности синтезированных соединений проводился на основе квантово-химических расчетов с помощью компьютерной программы PASS [7]. Наиболее вероятные виды биологической активности углеводных производных пиперазина и пиперидина ($P_a > 0.5\%$), спрогнозированные компьютерной программой PASS, представлены в табл. 3.

Таким образом, полученные данные по синтезу и прогнозированию биологической активности углеводных производных пиперазина и пиперидина с N-гликозилтиоамидными связями показывают, что они обладают высокой противоопухолевой, антигельминтной, антивирусной и другими видами активности и позволяют сделать заключение о целесообразности экспериментальных испытаний на биологическую активность с целью поиска новых перспективных физиологически активных веществ.

Литература

 Джаманбаев Ж.А., Абдурашитова Ю.А., Сарымзакова Р.К., Дермугин В.С. Синтез (2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозил)п-бензолсульфамидтиомочевины // Вестник КНУ

- им. Ж. Баласагына. Бишкек, 2003. Сер. 3. Вып. 1. С. 123–127.
- 2. Поройков В.В., Филимонов Д.А., Лагунин А.А., Глориозова Т.А., Рудик А.В., Степанчикова А.В. и др. Компьютерная оценка спектра биологической активности химических соединений с целью минимизации рисков их применения в медицине // Проблемы оценки риска здоровью населения от воздействия факторов окружающей среды. М., 2004. С. 167–169.
- Глориозова Т.А., Филимонов Д.А., Лагунин А.А., Поройков В.В. Тестирование компьютерной системы предсказания спектра биологической активности PASS на выборке новых соединений // Хим.-фарм. журн. – 1998. – Т. 32. – №12. – С. 33–39.
- 4. Джаманбаев Ж.А., Островская Л.А., Афанасьев В.А. Синтез и противоопухолевая активность углеводных производных нитрозометилмочевины // Сб. ДСП. Химиотерапия опухолей в СССР. М., 1988. Вып. 52. С. 145–152.
- 5. Сарымзакова Р.К., Абдурашитова Ю.А., Джаманбаев Ж.А. Пути снижения токсичности и повышения избирательности лекарственных препаратов //Вестн. Москов. ун. М., 2006. Сер. 2. Т. 47. № 3. С. 242–244.
- 6. *Блюгер А.Ф., Турчинс М.Е.* Препараты пиперазина как антигельминтные средства. Рига: АН Латв. ССР, 1959.
- 7. *Филимонов Д.А.*, *Поройков В.В.* Прогноз спектра биологической активности органических соединений//http://www.imbc.msk.ru/PASS/.