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3AJJAYA C KOCOM ITPOM3BOTHO
II/IsI CUCTEMBI YPABHEHWIT HEPABHOBECHON COPBIIIN

U.A. Kanues, I.C. Cabumosa

Vccnenyetca cuctema ypaBHEHU, MOAENUPYHOLLAs NPoLEecC HepaBHOBECHON copbumn. [JokasbiBaeTca Teopema Cy-
LLEeCTBOBaHMUS 1 €QVHCTBEHHOCTU PeLleHns 3a4ayun C KOCOW NMPOU3BOAHOW B MHOrOMEPHOM Crly4Yae B refbAepoBCKUX
knaccax cyHkUMI. BaxkHyto pornb npu fokasaTenbCTBe TeOopeMbl UrpaeT MoMyYeHHbI NpuHUMN Makcumyma. Cyuie-
CTBOBaHWe peLleHns 3afaym NokasblBaeTcs ¢ NOMOLLbo TeopeMmsl LLlayaepa o HenoaBMKHONM TOYKe BMOMHE HenpepbIB-
HOro orepatopa Ha Mariom NPoMeXxyTke BpeMeHU. 3aTem MoryYeHbl OLEHKM, MO3BONSAOLLME MPOAOIMKNTL peLleHne Ao
nto60oro KOHEYHOro 3HAa4YEHNS BPEMEHW.

Knroyesnle criosa: npoLecc HepaBHOBECHOW COp6LI,I/IVI; 3ajaya C KoCcon Npovn3BOAHOMN; rnobanbHas oAHO3HaYHas pas-
pPEeWnMoCTb.

TEH CAJIMAKCBI3 COPBIVIAAHBIH TEHOEMETEP CUCTEMACDHI YUYYH
JKAHTBIK TYYHOY MEHEH MACEJIE

Byn makanaga TeH canmakcel3 copbLmMsi NPoLEeCcCH Mofenaeeyy TeHaemenep crcTemach! n3ungeere anbiHraH. lenb-
Aepovik yHKUMsANap KnaccbiHaa Kern YeHeMAayy ydypaa XaHTblK TyyHOy MEHEH MaceneHu YeyyyHyH kanafaH xan-
rbl3 Xomny 6ap akeHAUrn Tyypanyy Teopema danungeHeT. TeopemaHbl Aanunaeene anbiHraH MakcuMym npuHLMou
MaaHuIyy porb OMHONT. A3 y6aKbIT apanbirbiHAa ThiHbIMCbI3 KblMblngarl onepaTopAayH KbIMMbINCbI3 YeKUTU Tyypanyy
LLlaynepavH TeopemachlHbIH XapaaMbl MEHEH MaceneHn YeuyyHYH oy 6ap akeHaurn kepceTyneT. AHAAH COH Kanchbl
raHa y6akblT MaaHUcuHe YerimH 60nboCyH MaceneHn YedyyHy ynaHTyyra MyMKyHayk 6epyydy 6aanap anbiHabl.

TylyHOyy ce30ep: TeH carMakcbi3 copbums MPOLECCH; XaHTbIK TyyHOY MeHeH Macene; rnmobangyy 6up maaHuge
Yeunnyy MyMKYHAYTY.

OBLIQUE DERIVATIVE PROBLEM FOR THE SYSTEM OF EQUATION
OF NON-EQUILIBRIUM SORPTION

L.A. Kaliev, G.S. Sabitova

The article regards a system of equations that simulates the process of non-equilibrium sorption. The existence and
uniqueness theorem for the solution of the oblique derivative problem in the multidimensional case in the holder classes
of functions is proved. An important role in the proof of the theorem is played by the maximum principle obtained.
The existence of a solution of the problem is shown using the Schauder theorem on the fixed point of a completely
continuous operator on a small time interval. Then estimates are obtained that allow the solution to continue to any
finite time value.

Keywords: process of non-equilibrium sorption; oblique derivative problem; global single-valued solvability.

Introduction. Actually all liquids found in na-
ture are solutions, i.e. a mixture of two or more sub-
stances (components). The filtration of liquids and
gases associated with them (dissolved, suspended)
solids in porous media accompanies the diffusion of
these substances and the mass exchange between
the liquid (gas) and solid phases. The most common

types of mass transfer are sorption and desorption, ion
exchange, dissolution and crystallization, colmata-
tion, sulfation and suffusion, paraffinization. Taking
into account the physical and chemical interaction of
the solutions with the formation rocks, the problems
of equilibrium and non-equilibrium sorption are con-
sidered.
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In this paper, we prove a global unique solvabi-
lity of the oblique derivative problem that simulates
the process of non-equilibrium sorption.

Formulation of the problem. Let m(x,t) is the
porosity of the medium, 0<m(x,7)<1; pore space
is filled with the solution and solid phase precipitated
from the solution; c(x,t) is a mass concentration of
a certain substance in liquid phase (per unit volume
of solution); s(x,#) is a mass concentration of the
solid phase of the substance the precipitated (per unit
pore volume).

Under equilibrium conditions, when the contact
between the solution and the solid phase is maintained
for a long enough time, the ratio between the concen-
trations ¢(x,¢) in solution and s(x,7) on the sorbent
is determined by sorption isotherm. At low concen-
trations of the solution, the amount of absorption is
determined by the linear relationship Henry isotherm
s=TIc, where I' >0 is a certain constant depending
on the physical and chemical properties of the medium
(the Henry constant).

Equilibrium sorption equations can not always
fully characterize the features of absorption and me-
tabolism in a two-phase solution — solid phase system.
In works [1-3] were proposed mathematical models
for describing the processes of non-equilibrium sorp-
tion. The concentration of the solid phase s(x,t) is
associated with the concentration ¢(x,7) in the liquid
phase with the equation

@zl(rc—s), (1)

o
where the positive constant 7 is the characteristic
relaxation time, I' is the Henry’s constant. The con-
centration ¢ of the substance in solution satisfies the
equation

m@:DAc—v'Vc—@, Q)

ot ot
where D(x,t) > 0 is the diffusion coefficient, v(x,t)
is the vector of the filtration rate, which are considered
known functions of these arguments; A is the Laplace
operator, V is the gradient, V-Vc¢ denotes the scalar
product of the vectors V and Vc.

In [4] the global unique solvability of the first
initial-boundary value problem for system (1) — (2)
is proved. In [5-7], a difference approximation of the
differential problem was formulated using an implicit
scheme, a solution of the difference problem was con-
structed using the sweep method, and the results of nu-
merical experiments were presented.

In the present paper we consider the oblique de-
rivative problem for the system of equations (1)—(2),
describing the process of non-equilibrium sorption.

Let QQ is a bounded domain of n-dimension-
al space R" with a sufficiently smooth boundary
§=0Q, O, :QX(O,T), T7>0;, S, :S><(0,T) is
cylinder lateral surface of Q,. It is required to find
the functions ¢(x,7), s(x,t), defined in domain Q,
satisfying in Q, the equations (1), (2), when the initial
conditions

c(x,O) =¢,(x), xeQ, (3)
s(x,O) =5,(x), xeQ, 4

and the boundary condition with oblique derivative
are fulfilled:

i b(x.0) Oc(x, t)
inl ox,

Suppose that a vector field

b(x,t) = (b,(x,1),b,(x,1),...,b,(x,1))
does not lie in the tangent plane at S and
b-n<—£ <0, where n(¢) is the unit vector of the
outward normal to S at the point &.

The main result of the paper is the following

Theorem. Let 0 <a <1 is a certain number, the
boundary S of the domain belongs to the Holder class
C***, the coefficients m, D, v of the equation (2) be-
long to the Holder class

€ (0,),
functions

¢, (x) € C7 (Q),

5o(x) €C” (),

b(x,7) e CH2 (S ),

=0, (x,0)eS,. (5)

the compatibility conditions of the zero order are satis-
fied:

Oc,(x)
ox,

i

3 b.(x,0) =0,xeS
i=1

and the conditions
0<c,(x)<M,0<5,(x)<I'M, xeQL

are fulfilled. Then the problem (1)—(5) has a unique
classical solution

c(x,) e C Q)
S(X, t) c Ca,l+a/2 (QT)

and estimates
0<c(x,)sM,
0<s(x,t)<TM, (x,t) €0,

are valid.
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Proof of the theorem.
First, estimates are obtained that represent the
maximum principle

0<c(x,t) <M, (x,)€Q,, (6)
0<s(x,0)<TM, (x,0) € O,. @)

From (1) and (3) we obtain the representation

s(x,t) = s,(x)e”" + Ee’”r j c(x,0)e” " do. (8
T 0
Substituting (8) into (2), we obtain

ma—c—DAc+i ~Vc+£c =
ot T )

1 r !
=—s,(x)e"" +—e " [c(x,0)e" do.
T T 0

Suppose that the negative minimum ¢ <0
of the function c(x,t#) is attained at some point
(x,,t,) inside the domain Q,.. Then at this point
¢, £0,-Ac<0, Vc=0 and from (9) we obtain

r 1 —ty/T

I Wit o
0
—cmmZ;so(xO)e +r_2C e [e""de,
0

min

—tn /T —tn /T /7
Ie,, 25,(xp)e * +Ic e (e" —1),

min

0>s5,(x,)e ©" =Te_ ",
that is, they got a contradiction, because s,(x) >0 and
Cnin < 0. Consequently, the negative minimum of the
function ¢(x,t) can not be achieved within the region

-
On the boundary S, the minimum can not be
achieved by condition (5) and the Zaremba — Gi-
raud lemma.
Lemma. Let

Lu=Ya,, (), (x) +> b,(x)u, (x)
ij=1 i=1
an elliptic operator in a bounded domain Q, with
a sufficiently smooth boundary u e C*(Q)nC'(Q),
Lu <0 in Q and let the function u(x) reach a strict
global minimum at the boundary point x, € 0Q . Then
for any vector b satisfying the condition b-n <0 the
inequality
ou
ably,
is satisfied, where n is the outer normal to 0Q at the
point x,.

This lemma for harmonic functions was proved
by Zaremba [8], and in a more general formulation of
Giraud [9].

In our case, we consider:

>0

Lec=DAc—1i-Vc=F(x,t)=

_ 1 —t/T | —vh £ 0/r
_E+?C ;so(x)e T—ze (J)c(xﬂ)e de.
Suppose that the negative minimum ¢, <0 of

the function c(x,t) is attained at some point (x,,f,)
on the boundary of the region S,. Then:

r 1 iz
F(xo’to):@(x()’t())-i__cmin ——5,(xp)e olt _
ot T T

—I, TtO
_Lew [ e(x,,0)e” do <
T

2 0
ac r 1 —t /T
S— (X5 1)) +— Copin —— 50 (Xp e ol
ot T T
fo

/e r
e’ je%d@:@(xo,to)—i-—cmin -
0 ot T

2 “min

-—c
T

r

1 —t, /T —tn /T, ty/T
_;So(xo)e 0 _?Cmine 0 (80 _1)=

= %(xo,to)—%so (xo)e_to/r +£cmine_t°/r <0.

Hence F(x,t,)<0 in a neighborhood of a point
x, and one can apply the Zaremba — Giraud lemma,
ie.
@ =2b,(xy,1,)
ob X,.t, i=1 ’

But this contradicts the boundary condition (5).

Thus, the minimum of the function c(x,¢) is
achieved at the lower boundary of the region O,
, 1. e. at the initial time. At the initial time, the func-
tion c,(x) is nonnegative. Thus, we have proved that
c(x,t)20, (x,2) € O,.

Suppose now that within the region O,
a positive maximum ¢, >M of the func-
tion «c¢(x,t) is attained, 1. e. there exists
a point (x,,4,) € Q; : c(x,,t) =c,,, > M. At this point
¢, 20,-Ac20,Vc=0, and from (9) we obtain
the inequalities:

r

1 r

-/t
_cmax S _SO (x] )e 1 + 2 cmax
T T T

oelxy 1)

f
eftl/r‘[eﬂ/rdg,
0

Uik

T, <s,(x)e""+Tc, e"" (e"/T - 1),
0<s5,(x)e " =Tepe ™ =(5(x) Ty )e .

because

max

Again we have a contradiction,
So(x)<I'M, and ¢, > M.

The maximum of the function ¢(x,¢) can not be
reached on the boundary S, because of condition (5)

and the Zaremba — Giraud lemma. Let
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Lc=DAc—1i-Ve=F(x,t)=

:6—C+£c—lso(x) R
T T

Ot

Suppose that the positive maximum c_, > M of
the function c¢(x,¢) is reached at some point (x,,#) on
the boundary of the domain §,. Then:

r
(x,0)+—
T

e’ j' c(x,0)e”7do.
0

1
F(x,t)= % Co —;SO (x, e T —

r g
——e " [e(x,,0)e”7dO >
T 0

r 1 . T
- - ~nlt L -4/t o/t _
2 Cmax SO (xl )e 2 Cmaxe J. dg
T T T 0
I 1 e D Y
= _Cmax __So(xl)e ll i __cmaxe ll i (ell i _1) =
T T
1 we I
- -4/t & -4/t _
== So(x)e "+ . o€ =

= l(l—‘cmax - S() (xl )) eitl o
T

Consequently, F(x,#)> 0 in the neighborhood of
the point x, and one can apply the Zarembo—Giraud
lemma, i. €.

Oc
obl, ,
But this contradicts the boundary condition (5).

Thus, the maximum of the function c(x,?) is
achieved at the lower boundary of the region Q,, i. e.
at the initial time. At the initial instant of time, the func-
tion ¢,(x)<M. Therefore, c(x,t)<M, (x,t)eQ,.
The estimate (6) is proved.

The estimate (7) follows from the representation
(8) using (6). In fact, since s,(x) =0, c(x,7) 20, it fol-
lows from (8) that s(x,¢)>0, (x,7) € QT.

Since s,(x) <I'M, c(x,t) <M, then

> l(rM -TM)e™"'" =0.
T

<0

M t
+——e [ dO<TMe™" +

0

s(x,0) < sp(x)e””

+TMe ™" (e”’ —1) =TM.

The estimate (7) is proved.

The uniqueness of the solution of problem (1)—
(5) is a consequence of the estimates (6)—(7).

The existence of a solution of problem (1)—(5)
is proved with the help of Schauder’s theorem on
the fixed point of a completely continuous opera-
tor. Denote by V. the next closed convex subset of

C2+a,l+a/2 (ér, )

6c(x 1)

c(x, t)|c(x 0) =¢,(x);

(x.0es;: @ ||W,M@n)s K

=0,

where K is some fixed positive number depending on
the data of problem (1)—(5), which we will define later.
By a given function ¢ €V we find the function
5(x,t) =sy(x)e"" + e’”’j&(x, 0)e’*do. (10
Now to each function ¢ € V we put the function
¢ =A(¢) as a solution of the problem

0 r 1.
m—C—DAc+1"Vc+—c=—s, (11)
ot T T

c(x,0) = ¢, (x),

12
9D o, (xnyes,. (2

xeQ; Yb.(x,t)
i=1 .

Let us prove that the operator A is completely
continuous and, for sufficiently small 7;, takes the set
V, into itself. .

Let us show that § € C**" (QT1 ) It follows from
(10) that

0 _ 3 (0) ~ 1(0) it

K = max |5(0)|< s [§) +T €y 2{103%](1 e’).

Hence, using the expansion of the function e "
in the Maclaurin series, it is easy to obtain (for 7; <7)
the estimate

|5 1g <Isola’ +Ti— | ¢ o, - (13)

Similarly, from (10) follows the estimate:
|5Cx, 1)~ S(x DI

(x0,(x'1)e0y [ x— x' I

~ /
< s, 1% +F|C|§:g)>,| n[loa%(](l etr)<

<lso oo +7 L [, s (14)
i. e. the function § satisfies the Holder condition with
respect to the space variable with exponent o

The function § satisfies the Holder condition
with respect to the variable ¢ with any exponent
0 < B <1 (even Lipschitz), since it has a bounded de-
rivative with respect to time

S _ 1 —t/t r ﬂ/rt ~ o/t r.
5,(x,0) = —;so(x)e ——e " [é(x,0)e d0+?c(x,t),
0

1 r
AP 0 1 =)0 ( t/‘r)
‘SrlQn— \s0|Q+T|cQTI trer[loa%(]l e )+

(0>< 1

|c| |0|“” |~|(°>. (15)
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In particular, with S =1 we have:

|§(x,t)—§(x,t/)| <| ~ |(0)
|t—t/ |a/2|t_t/ |l—a/2 SIS, O °

This implies the inequality:

(a/2)

t t «
o |S(x ) S(x )| <T1 /2 |(0) (16)

| § sup 7

(x.0).(x.)eDy |t —
Estimates (13)—(16) prove that §e Ca,a/z g_‘QTl
and under the condition 7} <1 the next estimate holds

51l <GSy llga g, * TG lIE ]

Na,a/Z@Tl) N""‘/Z(Q ) (17)

where C,, C, are some positive constants that do not

depend on s,,¢. We will assume that C,, C, de-

pends on T, but does not depend on 7; < min{7,1,7}.
Since

5, =L (re-9),
T
then § € C*'**" (QT] )

For a solution c(x,#) of the problem (11), (12),
the estimate [10, p. 365] is valid

e larengy = C( 16 ey 15 gy ) 18)

where C is a positive constant independent of ¢,, §
We will assume that C depends on T, but does not
depend on 7, <T. Using (17), (18), we have

||CHCZ+a1+f1/Z _C (HCO ”Cz“’ +||S0 HC”(E))+
T1 a/ZC HCHC“” . (19)

This implies that the operator A:¢ — ¢ is com-
pletely continuous.

We choose the constant K, that appears in the
definition of the set Vi , as outcome of the condition

K>l e gy His0 )

For definiteness, we set

K=26,{116y [ e ) 150 e )

Then it follows from (19) that for sufficiently
small 7] the operator A takes the set V. into itself.

By Schauder’s theorem on the fixed point of
a completely continuous operator, the set ¥, contains
a fixed p01nt ¢ , which together with its correspondmg
function § from (10) is a solution of problem (1)—(5)
on the time interval [0,7].

The solution can be continued in k& steps to
7,.7,.,,1, k=12,.., and T,,,-7,26>0 and o

does not depend on the number k. This can be seen
from the estimate (19)

C(les ey
Tl a/ZC HC”

50 e ) +

<K—

CauZ

=26, (lley e g +nonw@).

Because || ¢ || = K, then it follows that as

o can be chosen W)
61—0(/2 — E — 1
2C,K 2C,’

not depending on the number k. Thus, the solution
in a finite number of steps can be continued to any
0<T < +oo.
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